Gutenberg Open


Person: Gebauer, Bastian (Autor) 
Titel: Localized potentials in electrical impedance tomography
1794.pdf (1.048 KB) PDF
Freie Schlagwörter (Englisch): Electrical impedance tomography, Calderon problem, factorization method
Quelle: Inverse problems and imaging. Vol. 2, No.2 (2008), S. 251 - 269
Erscheinungsjahr:    2008
ISBN / ISSN: 1930-8337
URN: urn:nbn:de:hebis:77-17947
Zeitschriftenaufsatz Zeitschriftenaufsatz
Sprache: Englisch
Open Access: OpenAccess
Person der Universität:    Gebauer, Bastian  In UnivIS suchen  
Einrichtung: Institut für Mathematik
DDC-Sachgruppe:    Mathematik
ID: 1794  Universitätsbibliothek Mainz
Informationen zu den Nutzungsrechten unserer Inhalte Informationen zu den Nutzungsrechten unserer Inhalte
Abstract: In this work we study localized electric potentials that have an arbitrarily high energy on some given subset of a domain and low energy on another. We show that such potentials exist for general L-infinity-conductivities (with positive infima) in almost arbitrarily shaped subregions of a domain, as long as these regions are connected to the boundary and a unique continuation principle is satisfied. From this we deduce a simple, but new, theoretical identifiability result for the famous Calderon problem with partial data. We also show how to construct such potentials numerically and use a connection with the factorization method to derive a new non-iterative algorithm for the detection of inclusions in electrical impedance tomography.
Verfügbarkeit prüfen:    Rechercheportal Mainz: 1930-8337
  KatalogPortal Mainz (inklusive FB 06): 1930-8337
  Elektronische Zeitschriftenbibliothek (EZB): 1930-8337
  URN (urn:nbn:de:hebis:77-17947)