Gutenberg Open


Personen: Song, Yi-Zhe (Autor) 
Li, Chuan (Autor) 
Wang, Liang (Autor) 
Hall, Peter M. (Autor) 
Shen, Peiyi (Autor) 
Titel: Robust visual tracking using structural region hierarchy and graph matching
Quelle: Neurocomputing. Bd. 89. Amsterdam : Elsevier. S. 12 - 20
Erscheinungsjahr:    2012
ISBN / ISSN: 0925-2312
URL der Originalveröffentlichung doi:10.1016/j.neucom.2011.11.030
Zeitschriftenaufsatz Zeitschriftenaufsatz
Sprache: Englisch
Open Access:
Person der Universität:    Li, Chuan  In UnivIS suchen 
Einrichtung: Institut für Informatik
DDC-Sachgruppe:    Informatik
ID: 53631  Universitätsbibliothek Mainz
Informationen zu den Nutzungsrechten unserer Inhalte Informationen zu den Nutzungsrechten unserer Inhalte
Abstract: Visual tracking aims to match objects of interest in consecutive video frames. This paper proposes a novel and robust algorithm to address the problem of object tracking. To this end, we investigate the fusion of state-of-the-art image segmentation hierarchies and graph matching. More specifically, (i) we represent the object to be tracked using a hierarchy of regions, each of which is described with a combined feature set of SIFT descriptors and color histograms; (ii) we formulate the tracking process as a graph matching problem, which is solved by minimizing an energy function incorporating appearance and geometry contexts; and (iii) more importantly, an effective graph updating mechanism is proposed to adapt to the object changes over time for ensuring the tracking robustness. Experiments are carried out on several challenging sequences and results show that our method performs well in terms of object tracking, even in the presence of variations of scale and illumination, moving camera, occlusion, and background clutter.
Verfügbarkeit prüfen:    Rechercheportal Mainz: 0925-2312
  Elektronische Zeitschriftenbibliothek (EZB): 0925-2312