Gutenberg Open


Personen: Porz, Nikolas (Autor) 
Hanke, Martin (Autor) 
Baumgartner, Manuel (Autor) 
Spichtinger, Peter (Autor) 
Titel: A model for warm clouds with implicit droplet activation, avoiding saturation adjustment
Quelle: Mathematics of climate and weather forecasting. Bd. 4. H. 1. Berlin : de Gruyter. S. 50 - 78
Erscheinungsjahr:    2018
ISBN / ISSN: 2353-6438
URL der Originalveröffentlichung doi:10.1515/mcwf-2018-0003
Zeitschriftenaufsatz Zeitschriftenaufsatz
Weitere Angaben zur Dokumentart:    Elektronische Ressource
Sprache: Englisch
Open Access: OpenAccess
Personen der Universität:    Porz, Nikolas  In UnivIS suchen  ; Hanke, Martin  In UnivIS suchen ; Baumgartner, Manuel  In UnivIS suchen ; Spichtinger, Peter  In UnivIS suchen 
Einrichtungen: Institut für Physik der Atmosphäre
Institut für Mathematik
Zentrum für Datenverarbeitung
DDC-Sachgruppe:    Mathematik
DFG-Fachgebiet: Mathematik
ID: 58804  Universitätsbibliothek Mainz
Informationen zu den Nutzungsrechten unserer Inhalte Informationen zu den Nutzungsrechten unserer Inhalte
Abstract: The representation of cloud processes in weather and climate models is crucial for their feedback on atmospheric flows. Since there is no general macroscopic theory of clouds, the parameterization of clouds in corresponding simulation software depends crucially on the underlying modeling assumptions. In this study we present a new model of intermediate complexity (a one-and-a-half moment scheme) for warm clouds, which is derived from physical principles. Our model consists of a system of differential-algebraic equations which allows for supersaturation and comprises intrinsic automated droplet activation due to a coupling of the droplet mass- and number concentrations tailored to this problem. For the numerical solution of this system we recommend a semi-implicit integration scheme, with efficient solvers for the implicit parts. The new model shows encouraging numerical results when compared with alternative cloud parameterizations, and it is well suited to investigate model uncertainties and to quantify predictability of weather events in moist atmospheric regimes.
Verfügbarkeit prüfen:    Rechercheportal Mainz: 2353-6438
  Elektronische Zeitschriftenbibliothek (EZB): 2353-6438