Histone deacetylase inhibitors reverse resistance to methylating agents: mechanisms in malignant melanoma and glioblastoma cells

Dissertation
Zur Erlangung des Grades
Doktor der Naturwissenschaften

Am Fachbereich Biologie
Der Johannes Gutenberg-Universität Mainz

Andrea Krumm geb. am 16. September 1986 in Wismar
Mainz, 2016
Dekan:

1. Berichterstatter:

2. Berichterstatter:

Tag der mündlichen Prüfung: 10. Februar 2016
Die vorliegende Arbeit wurde in der Zeit von April 2012 bis Dezember 2015 am Institut für Toxikologie der Universitätsmedizin Mainz angefertigt und wird am Fachbereich Biologie der Johannes Gutenberg Universität (D77) eingereicht.
Table of Contents

1 Summary ... 1

2 Introduction .. 3

2.1 CANCER .. 3

2.1.1 Malignant melanoma ... 3

2.1.1.1 Therapy of metastatic melanoma ... 4

2.1.2 Glioblastoma multiforme .. 5

2.1.2.1 Therapy of Glioblastoma multiforme ... 6

2.2 ALKYLATING AGENTS... 6

2.2.1 Methylating agents ... 6

2.2.1.1 Toxicity of \(O^6 \)-methylguanine ... 8

2.2.2 Chloroethylating agents .. 9

2.2.2.1 Toxicity of chloroethylating agents ... 10

2.3 RESISTANCE TO ALKYLATING AGENTS.. 10

2.3.1 DNA repair ... 10

2.3.1.1 Direct damage reversal ... 11

2.3.1.1.1 Oxidative dealkylation ... 11

2.3.1.1.2 Alkytransferases .. 11

2.3.1.2 Base excision repair ... 11

2.3.1.3 Mismatch repair ... 13

2.3.1.4 Nucleotide excision repair ... 14

2.3.1.5 DNA double-strand break repair ... 15

2.3.1.5.1 Non-homologous end joining ... 15

2.3.1.5.2 Homologous recombination ... 16

2.3.1.6 Interstrand crosslink repair ... 18

2.3.1.7 Translesion Synthesis .. 19

2.3.2 DNA damage response and cell death .. 19

2.3.2.1 DNA damage response ... 19

2.3.2.2 Apoptosis .. 20

2.3.2.3 Necrosis and Necroptosis ... 21

2.3.2.4 Senescence .. 21

2.3.2.5 Autophagy ... 22

2.4 HISTONE DEACETYLASES ... 22

2.4.1 Histone deacetylases and cancer ... 23

2.4.2 Histone deacetylase inhibitors ... 23

2.4.2.1 Valproic acid .. 23
2.4.2.2 Entinostat (MS-275) ... 24
2.4.2.3 Histone deacetylase inhibitors and cancer therapy 24
 2.4.2.3.1 Histone deacetylase inhibitors and apoptosis 24
 2.4.2.3.2 Histone deacetylase inhibitors and cell cycle 25
 2.4.2.3.3 Histone deacetylase inhibitors and DNA repair 26
2.5 AIM OF THE STUDY ... 28
3 Materials and Methods .. 29

3.1 MATERIALS .. 29
 3.1.1 Chemicals and Consumables ... 29
 3.1.2 Equipment ... 29
 3.1.3 Software ... 30
3.2 METHODS ... 30
 3.2.1 Cell Culture ... 30
 3.2.1.1 Cell lines ... 31
 3.2.1.2 Treatments and irradiation .. 32
 3.2.1.2.1 Histone deacetylase inhibitor treatment 32
 3.2.1.2.2 Treatment with alkylating agents ... 33
 3.2.1.2.3 Olaparib treatment ... 33
 3.2.1.2.4 Irradiation ... 33
 3.2.1.3 Cell growth ... 33
 3.2.1.4 Colony Formation Assay .. 34
 3.2.1.5 Transfection ... 34
 3.2.2 Flow cytometry analyses ... 35
 3.2.2.1 Apoptosis and cell cycle detection .. 35
 3.2.2.1.1 Propidium iodide staining ... 35
 3.2.2.1.2 AnnexinV-FITC/Propidium iodide double-staining 35
 3.2.2.2 Homologous recombination assay .. 36
 3.2.3 Protein analysis .. 36
 3.2.3.1 Protein extracts .. 36
 3.2.3.1.1 Total protein extraction ... 36
 3.2.3.1.2 Nuclear protein extraction ... 36
 3.2.3.1.3 Protein concentration determination 37
 3.2.3.1.4 Protein extraction for phosphorylated and large proteins 37
 3.2.3.1.5 Semi-quantitative measurement of protein concentration 37
 3.2.3.2 Sodium dodecyl sulfate polyacrylamide gel electrophoresis 37
 3.2.3.3 Immunoblotting .. 38
3.2.3.4 Antibodies .. 38
3.2.3.5 Immunohistofluorescence .. 39
3.2.3.6 Immunofluorescence .. 40
3.2.3.7 MGMT activity assay ... 40
3.2.4 Gene expression ... 41
3.2.4.1 Real time polymerase chain reaction 41
3.2.4.1.1 Primer sequences .. 41
3.2.4.1.2 PCR array ... 42
3.2.5 Xenograft experiment .. 42
3.2.6 Statistics .. 42

4 Results ... 43

4.1 Effect of histone deacetylase inhibition on the sensitivity of melanoma cells to genotoxic stress ... 43

4.1.1 Histone deacetylase expression in melanoma 43
4.1.2 Effect of HDAC inhibitors on melanoma cells 45
4.1.3 Influence of HDAC inhibitor pretreatment on the sensitivity of melanoma cells to genotoxic stress ... 47
4.1.3.1 Characteristics of HDAC inhibitor-mediated sensitization 50
4.1.3.2 Role of O^6-methylguanine-DNA methyltransferase in HDAC inhibitor-mediated sensitization of melanoma cells to TMZ 52
4.1.4 HDAC inhibitor regulated genes and proteins that determine TMZ sensitivity ... 53
4.1.4.1 Role of checkpoint signaling in HDAC inhibitor-mediated sensitization of melanoma cells to TMZ .. 55
4.1.4.2 Role of DNA repair in HDAC inhibitor-mediated sensitization of melanoma cells to TMZ ... 56
4.1.4.2.1 The functional consequence of HDAC inhibitor-mediated downregulation of DNA repair proteins .. 59
4.1.4.2.2 Role of RAD51 in sensitivity of melanoma cells to TMZ 62
4.1.5 Influence of the HDAC inhibitor VPA on RAD51 and melanoma tumor growth in vivo ... 63

4.2 Effect of histone deacetylase inhibition on the sensitivity of glioblastoma cells to TMZ ... 65

4.2.1 Effect of HDAC inhibitor pretreatment on the sensitivity of glioblastoma cells to TMZ ... 65
4.2.2 Effect of HDAC inhibitor and TMZ co-treatment on glioblastoma cells ... 67
4.2.2.1 Regulation of RAD51 by MS-275 in glioblastoma cells 69
4.2.2.2 Cell cycle regulation upon MS-275 and TMZ co-treatment in glioblastoma cells ... 71
4.2.2.3 DNA damage response of glioblastoma cells exposed to TMZ in combination with MS-275 72

5 Discussion .. 74

5.1 INHIBITION OF HISTONE DEACETYLASES SENSITIZES MELANOMA CELLS TO METHYLATING AGENTS BY IMPAIRING HOMOLOGOUS RECOMBINATION .. 74
5.2 COMBINATION OF HISTONE DEACETYLASE INHIBITION AND TMZ PARTIALLY SENSITIZES GLIOBLASTOMA CELLS BY DISRUPTION OF DNA DAMAGE SIGNALING 82
5.3 OUTLOOK ... 86

6 References ... 87

7 Supplementary information .. 105

7.1 SUPPLEMENTARY FIGURES AND TABLES ... 105
7.2 ABBREVIATIONS .. 109
7.3 PUBLICATIONS .. 113
7.4 CONGRESSES (POSTER PRESENTATIONS) .. 113
1 Summary

The aggressive characteristics of metastatic melanoma and glioblastoma necessitate DNA-damaging therapies, in particular with methylating agents such as Temozolomide (TMZ) or Dacarbazine (DTIC). However, the efficacy of therapy is limited by resistance factors such as DNA repair, DNA damage signaling and impaired apoptosis execution. Histone deacetylase (HDAC) inhibitors have proven antineoplastic as they are associated with cell cycle and apoptosis regulation as well as with DNA repair. Therefore, this study investigated whether HDAC inhibition enhances the efficacy of DNA damaging therapies in malignant melanoma and glioblastoma cell lines as well as its influence on DNA damage-resistance pathways.

First, it was shown that malignant melanoma cells express high levels of class I HDACs HDAC1, HDAC2 and HDAC3 in comparison to non-cancerous cells. Pre-treatment inhibition of these HDACs by valproic acid or Entinostat enhanced the apoptotic response of melanoma cells to the methylating agent TMZ, the chloroethylating agent Fotemustine and to ionizing radiation without sensitizing primary melanocytes. This work proposes that HDAC inhibition sensitizes melanoma cells to DNA damaging insults by downregulating proteins involved in homologous recombination (HR) repair of replication-dependently formed DNA double-strand breaks (DSBs), which leads to an increase in apoptosis. This is substantiated by the following observations obtained in this study: Inhibition of class I HDACs reduced the expression of the HR factors RAD51 and FANCD2 on transcript and protein level. The resulting functional impairment of HR decreased the repair of DSBs by this pathway and increased the sensitivity to PARP1 inhibition, which relies on HR derogation. Consequently, HDAC inhibition increased replication dependent DSB formation following TMZ exposure. The protective role of HR in melanoma TMZ toxicity was confirmed by RAD51 knockdown experiments. RAD51 knockdown cells were more susceptible to TMZ-induced apoptosis than the corresponding control lines.

In glioblastoma cells, half of the tested cell lines exhibited increased TMZ-induced cell death in combination with the HDAC inhibitor Entinostat. The findings support a possible mechanism whereby HDAC inhibition disrupts DNA damage signaling in glioblastoma cells and alters the cell cycle regulation in response to TMZ, leading to apoptosis. TMZ treatment activated the DNA damage signaling kinases ATM/ATR, whereas in combination with Entinostat, ATM/ATR activation was abolished. Similarly, TMZ-induced downstream signaling to checkpoint kinases (CHK1/CHK2) as well as the following p53 stabilization and expression of the cell cycle regulator p21\(^{\text{Cip1/Waf1}}\) were abrogated in the presence of Entinostat. Further, HDAC inhibition protected from endoreplication upon TMZ-treatment and instead induced apoptosis in glioblastoma cells.

In conclusion, this work demonstrates that class I HDAC inhibitors are DNA damage sensitizers in cancer cells. This HDAC inhibitor-mediated sensitization is due to the impairment of RAD51 and
FANCD2 dependent HR repair in melanoma cells, or due to the premature shutdown of DNA damage signaling in glioblastoma cells. As inhibitors like valproic acid and Entinostat are well-tolerated in patients, the combination of adjuvant HDAC inhibition with methylating agents is a reasonable approach for improving therapeutic efficacy. Since acting on general DNA damage resistance pathways, HDAC inhibition might further provide a way for combination with genotoxic agents other than the common O^6-alkylating, thereby circumventing the major resistance factor O^6-methylguanine-DNA methyltransferase.
2 Introduction

2.1 Cancer

Cancer denotes malignant neoplasms of various origins, most frequently arising from prostate, breast, cervix, lung or colon that collectively caused 8.2 million deaths worldwide in 2012 (Stewart et al., 2014). The reasons for its malignancy include unlimited proliferative capacity, resistance to cell death induction, genomic instability and the potential to metastasize. These features develop through inactivation of tumor suppressor genes (TSGs), which are typically responsible for cell cycle or cell death control, as well as by activation of oncogenes that drive proliferation (Hanahan and Weinberg, 2011). These alterations are the consequence of either changes of the base sequence of DNA (mutations), induced for instance by chemicals or radiation, or they originate from changes in gene expression caused by epigenetic means, which do not change the DNA sequence. Tumors can generally be staged by their size and invasiveness from stage I, which is localized and small, until stage IV, which describes an aggressive tumor linked to poor prognoses that has often metastasized to different parts of the body. Examples of two stage IV tumor types that resist therapy and therefore display low survival are malignant melanoma and glioblastoma multiforme (GBM).

2.1.1 Malignant melanoma

Cutaneous melanoma belongs to the five most frequently diagnosed cancers in Germany, out of which, approximately 7-8% have metastasized and show low 5-year-survival rates ranging between 10-25% (Kaatsch et al., 2009/2010; Balch et al., 2009). It develops from melanocytes that reside in the epidermal layer of the skin. There they produce the pigment eumelanin to protect epidermal cells against ultraviolet (UV) radiation-induced DNA lesions (Brenner and Hearing, 2008). Paradoxically, UV radiation is also the main risk factor for melanoma development, which predominantly affects fair-skinned populations (SEER - The Surveillance, Epidemiology, and End Results, 2015). This can be explained by lower eumelanin production in fair-skinned individuals and consequently lower protection against UV radiation (Brenner and Hearing, 2008; Vincensi et al., 1998; Meredith and Sarna, 2006). The higher energy spectrum of sun-emitted UV radiation that reaches the earth’s surface (namely, UVB) induces pre-mutagenic cyclobutane-pyrimidine dimers (CPD) that, if not repaired, are prone to be converted into so-called ‘UV signature mutations’ by DNA replication; predominantly cytosine-to-thymine-transitions (You et al., 2001). The role of UV as the main reason for melanoma development is underlined by the finding that melanomas do not only bear the highest mutation load among cancers (Hodis et al., 2012), but that the vast majority of them are C→T transitions. Genes commonly found modified by these mutations in melanoma cells are the cyclin-dependent-kinase-inhibitor 2A (CDKN2A) locus, tumor suppressor TP53 or
different targets in the mitogen-activated protein kinase (MAPK) pathway (Hodis et al., 2012; TCGA, 2015).

More than 20% of melanomas carry a mutation in CDKN2A that encodes for two proteins, both of them controlling the G1/S cell cycle checkpoint: one of them, p16INK4a, by inhibiting cyclin-dependent-kinase 4 and 6 (CDK4/CDK6) (Serrano et al., 1993), the other, p14ARF, by binding to and inhibiting the E3-ligase MDM2, which leads to stabilization of p53 (Stott et al., 1998). Another 20% of melanomas harbor a mutation in TP53 (Hodis et al., 2012).

The MAPK pathway regulates proliferation, differentiation and apoptosis in response to various activators like cytokines, growth factors or DNA damage. It refers to a phosphorylation cascade that can be activated by small GTPases of the rat sarcoma (RAS) family. One member, NRAS, is mutated in approximately 20% of melanomas, which leads to more effective GTP-binding, lower intrinsic ATPase activity and therefore higher activation of its target proteins, namely rapidly accelerated fibrosarcoma (RAF) kinases. The B-RAF-kinase plays a pivotal role in melanoma as its gene is mutated in 50-60% of melanomas, yielding a constitutively active protein (Hodis et al., 2012). Since activation of the MAPK pathway is a common feature of melanoma, leading to increased cell proliferation and survival, its targeting is a novel therapy approach that will be discussed in 2.1.1.1.

Even though mutations fundamentally account for oncogenic transformation in melanomagenesis, epigenetic changes also play an important role. These comprise genome-wide DNA hypomethylation and loss of 5’hydroxymethylcytosine (Lian et al., 2012), an intermediate of active DNA demethylation, both of which are prognostic and diagnostic markers for melanoma. Despite the genome-wide decrease in DNA methylation, promoter specific methylation increases for certain genes, leading to the suppression of the corresponding gene product. This applies, for instance, to the DNA repair gene \(\text{O}^6\)-methylguanine-DNA methyltransferase (\textit{MGMT}) that is silenced in 38% of melanomas (Hassel \textit{et al.}, 2010) and removes therapy-induced DNA lesions. However, its impact on therapy outcome is still under debate (Hassel \textit{et al.}, 2010; Tuominen \textit{et al.}, 2015).

2.1.1.1 Therapy of metastatic melanoma

Currently, melanoma therapy aims at manipulating two novel targets i.e. the MAPK pathway and the immune response. B-RAF inhibitors like Vemurafenib or Dabrafenib interfere with the mutated, constitutively active B-RAF protein and show an increase in progression free survival of 3.5 months for patients with B-RAF-mutated tumors compared to patients treated with chemotherapy (Chapman \textit{et al.}, 2011; Hauschild \textit{et al.}, 2012). Additionally, inhibitors of mitogen-activated kinase kinases (MEK inhibitor) derogate the MAPK pathway and show a promising additional increase in progression free survival of three months in combination with B-RAF inhibition in B-RAF-mutated disease (Larkin \textit{et al.}, 2014; Robert \textit{et al.}, 2015).
In order to stimulate the immune response against melanoma cells, two drugs are being used that block receptors on T cells that negatively regulate T cell proliferation (Hodi et al., 2010; Topalian et al., 2014). Therefore, these drugs are also applicable in the treatment of B-RAF wild type (wt) tumors. Combination of both, the CTLA-4 antagonist Ipilimumab and PD-1 antagonist Nivolumab, resulted in a median progression free survival of 11 months, which is comparable to that of a combination of B-RAF inhibitor and MEK inhibitor and was observed irrespective of B-RAF status (Larkin et al., 2015).

Despite the success of novel therapies, rapid development of resistance against these drugs (Flaherty et al., 2012; Chapman et al., 2011; Hauschild et al., 2012; Hodi et al., 2010; Topalian et al., 2014) tempered expectations and required the subsequent use of chemotherapeutics, primarily with the methylating agents Dacarbazine (DTIC), Temozolomide (TMZ) or the chloroethylating agent Fotemustine (FM) (Dummer et al., 2012). This makes alkylating agents a keystone in melanoma therapy, though resistance likewise reduces their efficacy. Mechanism of action and resistance to alkylating chemotherapeutics are discussed in 2.2 and 2.3.

In addition, radiation therapy is used in rare cases of symptomatic metastasis in the brain or near to bones (Dummer et al., 2012).

2.1.2 Glioblastoma multiforme

GBM is a brain tumor belonging to neoplasms of glial cells (Glioma), which had an incidence of approximately 3/100 000 per annum in the United States between 2006 and 2010 (Ostrom et al., 2013). GBM constitutes the major fraction of gliomas (54 %) (Ostrom et al., 2013) and it is also the most aggressive with a median survival of 15 months (Stupp et al., 2014a). It originates from oncogenic transformation of astrocytes and is highly invasive. Interestingly, only 10 % of GBM develop from lower grade astrocytomas (Ohgaki et al., 2013), so-called secondary GBMs. In fact, most GBMs develop spontaneously de novo without any indications of precursor lesions (primary GBM). Both share a similar histology, but can be differentiated by genetic means, for instance mutations in isocytrate dehydrogenase (IDH1/2) are exclusively found in secondary GBMs (Ohgaki et al., 2013). Genetic alterations differ greatly between primary and secondary GBMs, though they affect similar pathways that drive oncogenesis. Similar to melanomas, GBMs inactivate the G1/S cell cycle checkpoint thereby increasing proliferation. This is achieved by perturbing retinoblastoma protein (RB1) dependent S-phase gene regulation. This occurs in primary GBMs by homozygous deletions of CDKN2A-p16INK4a and in secondary GBMs by promoter methylation mediated shutdown of RB1 (Crespo et al., 2015). Furthermore, alterations are also found in the p53 pathway (Brennan et al., 2013). While secondary, and correspondingly less, GBMs harbor mutations in TP53, primary GBMs mainly loose CDKN2A and consequently p14ARF expression leading to an uncontrolled degradation of p53 (Crespo et al., 2015). Additional mechanisms whereby GBM cells increase their proliferation are the amplification of epidermal
growth factor receptor (EGFR) or its mutation, leading to a permanent activated state. This allows the cell to efficiently activate proliferative pathways like protein kinase B (AKT) or MAPK (Brennan et al., 2013). GBMs further display a higher activity of the AKT pathway due to mutation or reduction of phosphatase and tensin homologue (PTEN) that physiologically abates AKT activation by dephosphorylation of phosphatidylinositol triphosphate, an attractor of AKT (Brennan et al., 2013). As seen for PTEN, RB or MGMT, GBMs display characteristic mutations as well as epigenetic marks.

2.1.2.1 Therapy of Glioblastoma multiforme

Newly diagnosed GBM is removed by surgery, which removes an average 89% of the tumor (Lacroix et al., 2001) leading to symptomatic improvement and material for diagnostics. Only when more than 98% of the tumor is resected, surgery is linked to a statistically significant improvement in patient survival (Lacroix et al., 2001). Since it is impossible to remove the entire tumor burden, due to single cells invading the surrounding tissue, radiotherapy with concomitant TMZ-based chemotherapy is used. The MGMT promoter methylation status plays a significant role in therapy outcome (Stupp et al., 2014a). Whereas patients with a methylated MGMT promoter respond with a median survival of 23.4 months in the combination treatment compared to 15.3 months with radiation alone, combination treatment of tumors with unmethylated MGMT promoter results in an minimal increase in median survival from 11.8 month to 12.6 month (Stupp et al., 2009). Relapses might be treated with chloroethylating agents such as CCNU (Stupp et al., 2014a).

2.2 Alkylating agents

Alkylating agents comprise a heterogeneous group of compounds that transfer alkyl groups to DNA. Exposure to environmental alkylating agents and endogenous alkylation of DNA seem to be rare events (Margison et al., 2003; Rydberg and Lindahl, 1982). For clinical applications, agents that transfer the alkyl group via an SN1 reaction to oxygens and nitrogens of DNA and RNA are predominantly used. Alkyl groups that are transferred by anti-neoplastic therapeutics are methyl- or chloroethyl-groups. Even though the mechanism of cytotoxicity differs greatly between the different alkyl groups, they are both able to block DNA replication either due to the induced lesion itself or due to toxic secondary lesions that form during their processing. They therefore target the fast-proliferating characteristic of tumor cells. This will be discussed in more detail in sections 2.2.1.1/2.2.2.1.

2.2.1 Methylating agents

Chemotherapeutics that transfer methyl groups to DNA include Procarbazine, Streptozotocin, DTIC and TMZ. As each molecule transfers one methyl group to its target they are referred to as mono-functional. DTIC requires metabolic activation by cytochromes P450, which catalyze its
demethylation to 5-(3-monomethyl-1-triazeno)imidazole-4-carboxamide (MTIC) (Reid et al., 1999), whereas TMZ spontaneously hydrolyzes in aqueous solution (pH>7) to MTIC (Newlands et al., 1997). Subsequent degradation of MTIC gives rise to the highly reactive methyldiazonium cation that reacts with nucleophilic sites of DNA, thereby transferring the methyl group (Figure 1).

![Figure 1 – Formation of O6-methylguanine by TMZ and DTIC.](image-url)

Hydrolysis of TMZ (left) and demethylation of DTIC (right) to MTIC followed by its degradation and transfer of the methyl group to guanine. Modified from (Newlands et al., 1997; Reid et al., 1999)
Out of the 13 targets in DNA that are methylated by monofunctional S_N1 methylating agents, the most frequently damaged site is $N7$-guanine (~70%) forming $N7$-methylguanine ($N7$MeG), followed by $N3$-adenine (~10%) forming $N3$-methyladenine ($N3$MeA). Both are regarded as harmless at clinical relevant doses, due to their efficient repair by base excision repair (BER) (2.3.1.2). In contrast, O^6-methylguanine (O^6MeG), which makes up only ~6-8% of all induced DNA lesions (Drablos et al., 2004; Beranek, 1990), is the most fateful lesion upon methylating agent exposure due to its high cytotoxic and mutagenic potential (Kaina et al., 2007).

2.2.1.1 Toxicity of O^6-methylguanine

The most toxic lesion induced by clinically relevant S_N1 methylating agents is O^6MeG. If not repaired by MGMT (2.3.1.1.2), it is mutagenic during replication, forming mispairs with thymine at a ratio of 1:3 (Abbott and Saffhill, 1979; Choi et al., 2006). O^6MeG opposite a misincorporated thymine might then be repaired by MGMT, converted from a G:C to an A:T transition during a second replication round or it might be recognized by mismatch repair (MMR) in an MGMT deficient and MMR proficient background. Processing by MMR generates single stranded DNA (ssDNA) intermediates (see 2.3.1.3) (Mojas et al., 2007) and the missing strand is resynthesized in order to remove the mispair. However, since O^6MeG still exists in the template DNA, reinsertion of the wrong nucleotide may occur and repeatedly be processed by MMR. These futile MMR cycles might interfere with replication, if a replication fork encounters an ssDNA intermediate. This could lead to either a single-ended DSB if the fork collapses (Figure 2) or to a stall and regression of the replication fork. Re-initiation of DNA replication in both cases requires homologous recombination (HR), giving rise to sister chromatid exchanges (SCEs) (Roos et al., 2009). If replication cannot be resumed by HR, cells undergo apoptosis. The demonstrated model of how O^6MeG exerts its cytotoxic effects is substantiated by strong experimental data. The MutSα complex has been shown to bind to O^6MeG-thymine as well as to O^6MeG-cytosine pairs (Duckett et al., 1996). Consequently, O^6MeG-related apoptosis induction depends on MMR proficiency. Absence of MMR and accordingly prevention of ssDNA intermediates upon O^6MeG prevents induction of SCEs and chromosomal aberrations (Branch et al., 1993; Galloway et al., 1995; Hickman and Samson, 1999; Kaina et al., 1997; Vernole et al., 2003). Further, apoptotic signaling and execution require at least two cell cycles of damage processing (Quiros et al., 2010). Additionally, low doses of e.g. N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), a methylating agent with similar chemistry to TMZ, lead to an accumulation of aberrations and SCEs whereas higher doses result in apoptosis induction (Kaina, 1985; Kaina and Aurich, 1985), which hints to a tolerable and HR-repairable load of O^6MeG that is exceeded at higher concentrations. The role of HR is also seen in cells with reduced HR capacity, which show increased sensitivity to S_N1-methylating agents (Quiros et al., 2011; Roos et al., 2009).
Figure 2 – Toxicity of \(O^6 \)-methylguanine. Processing of \(O^6 \)-methylguanine and mechanisms involved in survival and cell death. Modified from (Fu et al., 2012). Details are described in 2.2.1.1.

2.2.2 Chloroethylating agents

Another group of alkylating chemotherapeutics consists of chloroethylnitrosourea (CENU) derivatives that transfer chloroethyl groups onto DNA. The mono-functional \(S_N^1 \)-reacting agents Lomustine (CCNU) and Fotemustine (FM) are approved for second line therapy of GBM and metastatic melanoma, respectively. They spontaneously hydrolyze in aqueous solution to chloroethyldiazonium hydroxide that further decomposes into nitrogen and a chloroethyl carbonium ion, which reacts most notably with \(N^7 \)-guanine and \(O^6 \)-guanine giving rise to \(N^7 \)-chloroethylguanine and \(O^6 \)-chloroethylguanine, respectively (Ludlum, 1997; Bodell, 2009). Again, chloroethylation of the \(O^6 \)-guanine position exhibits the highest biological relevance as it firstly rearranges to \(N1-O6 \) ethenoguanine and further to a \(N1 \)-guanine-\(N3 \)-cytosine interstrand crosslink ([ICL], Figure 3) (Tong et al., 1982). Even though dG-dC crosslinks represent only ~3% of CENU-induced adducts, its replication blocking action is responsible for the cytotoxicity of these anti-neoplastic agents (Bodell et al., 1986).
2.2.2.1 Toxicity of chloroethylating agents

The toxic effect of chloroethylating agents relies on their DNA crosslinking nature. ICLs prevent opening of the DNA strand and, therefore, DNA replication and RNA transcription. In contrast to methylating agents, CENUs induce DSBs in the first S-phase after treatment, suggesting that the collapse of the replication fork at the ICL is responsible. These DSBs trigger either apoptotic or necrotic cell death (Nikolova et al., 2012; Batista et al., 2007). Resistance to chloroethylating agents is mediated primarily by MGMT, since it removes the O6-alkylation before the crosslink can form (Ludlum, 1990). Furthermore, repair pathways for ICLs (2.3.1.6) modulate sensitivity of cells to CENUs. These include HR, the Fanconi anemia (FA) pathway and nucleotide excision repair (NER) (Chen et al., 2007a; Nikolova et al., 2012; Batista et al., 2007; Barckhausen et al., 2014). Indeed, in melanoma cells it has been shown that even a single treatment with the CENU FM can upregulate the lesion-recognizing complex of DDB2 and XPC, leading to a long-lasting resistance phenotype (Barckhausen et al., 2014).

2.3 Resistance to alkylating agents

2.3.1 DNA repair

The removal or reversal of DNA damage is an essential cellular function which ensures physiological survival in a constantly threatening environment. These damages comprise modifications of the nucleobases, breaks in the sugar-phosphate backbone or errors that are introduced during replication. Most of the cells’ DNA damage is endogenously formed e.g. by erroneous replication, spontaneous hydrolysis of bases or by reactive oxygen species (ROS) formed...
during oxidative phosphorylation in the mitochondria, (De Bont and van Larebeke, 2004). Only a minor part of DNA damage is exogenously induced by sources like UV radiation or components of food or tobacco smoke (De Bont and van Larebeke, 2004). In order to deal with these damages, the cell developed a network of repair mechanisms, which remove specific lesions and back-up systems thereof. In cancer, DNA repair plays a dual role as impairment of repair increases the number of mutations and genomic instability, which drives oncogenic transformation (Goode et al., 2002). Secondly, DNA repair determines therapy sensitivity to DNA damaging treatment. Mechanisms that deal with alkylating agent induced lesions are described in the next sections.

2.3.1.1 Direct damage reversal

2.3.1.1.1 Oxidative dealkylation
ALKBH2 and ALKBH3 belong to the group of Fe(II)/α-ketoglutarate dependent dioxygenases and remove methyl groups from N1-methyladenine and N3-methylcytosine by hydroxylation of the methyl group that subsequently allows for the spontaneous release of formaldehyde and the unmodified base (Sedgwick, 2004). Both lesions are induced by Sn1 alkylating agents at a minor fraction of 0.6-1.3%, but they are potentially toxic, as was shown in E.coli (Shrivastav et al., 2010).

2.3.1.1.2 Alkyltransferases
The human MGMT protein removes alkyl groups from the \(O^6 \)-position of guanine and the \(O^4 \)-position of thymine (Sassanfar et al., 1991). Therefore, MGMT screens the DNA for these alkylation events and then transfers the alkyl group onto an internal cysteine. This results in inactivation of MGMT and a conformational change of the protein, which allows it to be recognized by ubiquitin ligases. After ubiquitination it is degraded by the proteasome (Lindahl et al., 1982; Srivenugopal et al., 1996). Accordingly, MGMT works stoichiometrically and is referred to as a ‘suicide enzyme’. Due to its importance in repairing \(O^6 \)-alkylations, which represent the cytotoxic lesions of alkylating anticancer therapy, MGMT expression, activity and regulation has extensively been studied. This revealed heterogeneous MGMT activity inter-individually as well as between different tissues. Overall, the highest activity was found in liver and the lowest in brain and lung tissues (Margison et al., 2003; Christmann et al., 2011). Likewise, cancers show a heterogeneous expression of MGMT, though some tumors (e.g. 38-50% of metastatic melanomas and GBMs) silence MGMT expression by promoter methylation, which increases their response to alkylating agents (Hassel et al., 2010; Brennan et al., 2013).

2.3.1.2 Base excision repair
Modifications to nucleobases are excised by proteins of the base excision repair (BER) pathway, which finally leads to a replacement of 1-10 nucleotides (Figure 4 a). Base modifications that are repaired by BER are bases that are oxidized by endogenous ROS, alkylated bases arising from
endogenous or therapy-induced alkylations and spontaneously deaminated bases that, in the case of cytosine, result in uracil-incorporated DNA. Repair is initiated by excision of the damaged base via hydrolysis of the N-glycosylic bond that is carried out by damage specific DNA glycosylases and leaves an apurinic/apyrimidinic site (AP site). Besides substrate specificity, DNA glycosylases differ in their enzymatic activity: the uracil-removing uracil DNA glycosylases (UDGs) or the N3MeA and N7MeG-excising N-methylpurine-DNA glycosylase (MPG) are monofunctional and solely bear glycosylase activity leaving an intact sugar-phosphate backbone missing only the base. Bifunctional glycosylases like the 8-oxoguanine-removing 8-oxoguanine glycosylase (OGG1) display an additional lyase activity, allowing cleavage of the sugar-phosphate backbone 3’ to the AP-site leaving a 5’phosphate and modified 3’ ends. This requires further processing by either AP-endonuclease 1 (APE1) or polynucleotide kinase 3’-phosphatase (PNKP) to yield a 3’hydroxyln group. For AP sites generated by monofunctional glycosylases, APE1 incises 5’ to the AP site also producing a 3’hydroxyl group and leaving a 5’deoxygenylose phosphate at the other side of the nick. Irrespective of varying 5’structures, polymerase β (POL β) inserts the appropriate nucleotide to the 3’ end. POL β additionally bears a phosphodiesterase function which hydrolyzes unmodified 5’ends, thereby making it a substrate for DNA ligase I (LIG I), which ligates both ends. In this case only one nucleotide is exchanged, which is referred to as ‘short-patch BER’. If the 5’ end is modified (oxidized, reduced), polymerase δ or polymerase ε, with the help of replication factor C (RFC) and proliferating cell nuclear antigen (PCNA), continue inserting up to 10 nucleotides, which is referred to as ‘long patch BER’. This leads to a displacement of the original strand by the newly synthesized strand, which is cleaved by flap endonuclease (FEN1) so that ligation via LIG I can occur.

One additional protein mediates BER though lacking enzymatic activity: X-ray repair cross-complementing protein (XRCC1) recruits and stimulates factors like APE1, POL β or polynucleotide kinase 3-phosphatase (PNKP). It further interacts with poly (ADP-ribose) polymerase 1 (PARP1), a protein required for the detection of DNA single-strand breaks (SSB), which are also repaired by the end-processing proteins, polymerases and ligases of the BER pathway (Svilar et al., 2011; Fortini and Dogliotti, 2007; Krokan and Bjoras, 2013; Caldecott, 2007).

BER is of particular importance for S81-methylating agent induced DNA lesions, as it efficiently removes the most abundantly induced N7MeG and N3MeA lesions, which both exhibit either indirect or direct toxic and mutagenic properties, respectively (Engelward et al., 1998; Tudek, 2003; Park and Ames, 1988).
Figure 4 – Mechanism of base excision (a) and mismatch DNA repair (b). Pathways are described in detail in the text (base excision repair 2.3.1.2, mismatch repair 2.3.1.3).

2.3.1.3 Mismatch repair

Substrates that are processed by MMR are base pairings that do not follow Watson-Crick pairing. These include mismatches introduced either by erroneous nucleotide insertion by DNA polymerases during DNA synthesis or by insertion of nucleotides opposite damaged and mispairing bases. This applies to 8-oxoguanine, which mispairs with adenine as well as to O6-MeG, which mispairs with thymine and is a prerequisite for cytotoxicity and mutagenicity of methylating agents as described earlier (2.2.1.1). Further, loops that build due to insertions or deletions (insertion/deletion loops – IDL) are detected by the MMR machinery (Fishel et al., 1994). Substrate recognition relies on MutS heterodimers, which in case of mispairs consists of MSH2 and MSH6 (MutSα) and for IDLs with more than four nucleotides consists of MSH2 and MSH3 (MutSβ) (Genschel et al., 1998). All subunits exhibit ATPase function, which allows scanning of DNA substrates and is inhibited by the exchange of ADP→ATP upon substrate recognition. This exchange induces a conformational change to a sliding clamp. The clamp complexes with a second heterodimer consisting of MLH1 and PMS2 (MutLa), which bears ATPase and endonuclease enzymatic activity. This allows displacement to nicks between Okazaki fragments on the lagging strand 5’ to the mismatch and interaction between MutLa and exonuclease 1 (EXO1), whose 5’→3’ exonuclease function removes the newly synthesized fragments including the lesion. In the leading
strand, the endonuclease function of MutLα is required to incise into the continuous strand and to generate a 5’ end lying 5’ of the mismatch for EXO1, which excises the mismatch. Detailed knowledge of how strand discrimination occurs and where incision takes place are still lacking. It is estimated that PCNA, which interacts with MutSα and MutLα dimers, dictates orientation and allows strand discrimination. Upon excision of up to a thousand nucleotides, the replication machinery, including POLδ, RFC and PCNA, resynthesizes the lacking strand, which is then re-ligated by LIG I (Li, 2008; Kunz et al., 2009; Jiricny, 2013) (Figure 4 b).

The crucial role of MMR in TMZ-induced O\(^\text{6}\)MeG is discussed in 2.2.1.1.

2.3.1.4 Nucleotide excision repair

NER removes 22-30 nucleotides surrounding a helix-distorting DNA lesion (Figure 5 a). These are mainly the UV-induced CDPs and the less abundant 6-4 pyrimidine pyrimidone photoproducts (6-4 PP) (Sugasawa et al., 2001; Scrima et al., 2008). Further substrates arise from reaction of DNA with epoxide intermediates during detoxification of polycyclic aromatic hydrocarbons as they can be found in tobacco smoke and food. NER can be initiated in two ways: global genome repair (GG-NER), which recognizes lesions in the whole genome and transcription coupled repair (TC-NER), which is limited to actively transcribed genes. In GG-NER, xeroderma pigmentosum complementation group C (XPC) binds to a small single-stranded piece of DNA opposite the actual lesion caused by lesion-related impaired base pairing. This also explains the role of GG-NER in repair and especially in recognition of ‘bulky lesions’ induced, for example, by platinum drugs or other crosslinking agents (Clement et al., 2010). As CDPs do not display a high affinity substrate for XPC itself, DDB2 takes over the generation of single-stranded DNA by binding to CPDs, introducing a kink in the damaged strand and ssDNA in the opposite strand. Once XPC has bound, it recruits the multiprotein complex transcription factor IIH (TFIIH) and its subunits XPB and XPD mediate strand opening, unwinding as well as lesion verification. Next, XPA and RPA stabilize the structure and organize assembly with XPG endonuclease responsible for 3’ incision and ERCC1-XPF endonuclease responsible for 5’ incision. Only if both nucleases are present, ERCC1-XPF incises 5’ to the lesion, leaving a 3’ hydroxyl group. The 3’ end is used by POLδ or POLε for DNA-resynthesis, which is supported by PCNA and RFC. In the 3’ direction from the lesion, XPG incises and releases a DNA fragment of 22-30 nucleotides, including the damaged base(s). Further, it generates a 5’ phosphate that serves as the ligation site for LIG I on the newly synthesized strand (Schärer, 2013; Marteijn et al., 2014).

Initiation of TC-NER requires recognition of lesion-stalled RNA polymerase II (RNAPII) by the Cockayne syndrome (CS) proteins CSB and CSA, which are responsible for NER protein recruitment. Translocation of RNAPII (‘backtracking’) allows binding of the NER factors (TFIIH, XPA, XPF, XPG) that accomplish lesion excision as described for GG-NER (Vermeulen and Fousteri, 2013).
NER is capable of removing methylating agent induced \(N^3\text{MeA}\) and \(N^7\text{MeG}\) as well as supporting recognition and repair of chloroethylating agent-induced ICLs (Plosky et al., 2002; Wood, 2010). Furthermore, NER has been shown to repair \(O^6\)-guanine methylation/ethylation lesions (Bronstein et al., 1992; Samson et al., 1988).

![Figure 5](image)

Figure 5 – Mechanism of nucleotide excision repair (a) and non-homologous end joining (b). Pathways are described in detail in the text (nucleotide excision repair - 2.3.1.4, non-homologous end-joining - 2.3.1.5.1).

2.3.1.5 DNA double-strand break repair

Breakage of both strands of the DNA helix considerably threatens and challenges a cell, since this potentially leads to mutations, chromosomal aberrations or induction of cell death. DNA double-strand breaks (DSB) can be induced exogenously by ionizing radiation originating from radioactive natural isotopes, medical procedures like X-rays and cancer treatments, or endogenously during replication e.g. when the replication fork meets damaged DNA (Pfeiffer et al., 2000; van Gent et al., 2001).

2.3.1.5.1 Non-homologous end joining

In mammalian cells, re-ligation of two DNA double-strand break ends induced by ionizing radiation occurs predominantly by non-homologous end joining (NHEJ), which does not require homology (Mao et al., 2008; Beucher et al., 2009). This is initiated by binding of a heterodimer consisting of KU70 and KU80 to the DSB ends, so that each end is encircled by one dimer,
protecting it from degradation and keeping both ends in proximity to each other (Walker et al., 2001; Downs and Jackson, 2004) (Figure 5 b). The dimer serves as a scaffold, as it recruits and binds many NHEJ factors. Interaction of the KU proteins (KU70 and KU80) with DNA-dependent protein kinase catalytic subunit (DNA-PKcs) establishes kinase activity of the complex, which allows autophosphorylation and phosphorylation of additional NHEJ proteins (Davis et al., 2014). The complex also regulates access of further factors to the DNA. As ends of DSBs, especially upon IR, often bear modified nucleotides, end-modifying enzymes, nucleases and polymerases clean them for relegation. The lyase activity of KU70 removes 5’ altered nucleotides and abasic sites, leaving a 5’ phosphate (Roberts et al., 2010). Further, PNKP helps generating ligateable ends with its 5’ kinase and 3’ phosphatase activity leading to the required 3’ OH and 5’ P end. However, these proteins do not recognize all possible end alterations like for instance overhangs or hairpins, which are processed by the DNA-PKcs activated 5’-3’ exonuclease Artemis or by the endonuclease Metnase (Ma et al., 2002; Beck et al., 2011). Another way of overcoming overhangs is to insert new nucleotides, which is carried out by POL λ or POL μ. For ligation of the cleaned ends, another complex containing XRCC4 and LIG IV is required, which finally seals the break (Lieber, 2010; Waters et al., 2014; Zhang et al., 2014).

A DSB repair mechanism that is independent of KU70/80 and LIG IV is termed alternative end joining (alt-EJ). Damage is therein recognized by PARP1 which recruits XRCC1 and LIG III. Processing of the ends is executed by the MRE11, RAD50, NBS1 (MRN) complex and C-terminal interacting protein CtIP (explained in 2.3.1.5.2), or by the polymerase POL β (Mladenov and Iliakis, 2011).

2.3.1.5.2 Homologous recombination

Homologous recombination (HR)-mediated repair of DSBs differs from NHEJ as it makes use of homologous sequences preferably on sister chromatids. It is therefore regarded as error free, but limited to the late S and G2 phase of the cell cycle (Figure 6). HR plays a minor role in repair of DSBs induced by IR. It essentially contributes to resolution of replication coupled errors like stalled replication forks and repairs one-ended DSBs resulting from replication fork-encountered SSBs in the DNA template (Arnaudeau et al., 2001; Petermann and Helleday, 2010). DSB repair by HR is initiated by end resection for generation of 3’ overhangs. Therefore, the MRN complex binds to the broken DSB ends and end processing is initiated by MRE11’s 3’-5’ exonuclease and single-strand DNA endonuclease activity. This enables bidirectional resection of the 5’ strand and, if necessary, removal of modified nucleotides (e.g. protein bound DNA ends). This is followed by interaction of MRN with the endonuclease CtIP that primarily acts on 5’ flaps and 5’ branched structures (Sartori et al., 2007; Makharashvili et al., 2014). This leads to 3’ overhangs which can be extended by the 5’-3’ exonuclease EXO1 (Symington, 2014). The resulting 3’ single stranded ends are bound by RPA, which protects them from formation of secondary structures and from
nucleolytic attacks. Central proteins in HR are RAD51 and its paralogs as they enable homology search and strand invasion. Since RAD51 forms filaments on single-stranded DNA, replacement of RPA is required. This is mediated by the RAD51 paralogs (XRCC3, XRCC2, RAD51D, RAD51C, RAD51B) and most importantly by BRCA2. The latter displaces RPA by RAD51 at ssDNA and promotes RAD51 filament formation (Liu et al., 2010; Thorslund et al., 2010). The 3' RAD51-nucleofilament then aligns with dsDNA of the sister chromatid for homology search. For yeast or E.coli, homology of 15 nucleotides is sufficient to stimulate invasion of the double-strand and displacement of the complementary strand, resulting in the displacement-loop (D-Loop) (Qi et al., 2015) The 3’ end of the (broken) invaded strand can serve as a primer for DNA synthesis by POL δ, which uses the intact DNA strand as the template (Li et al., 2009; Sebesta et al., 2011). The resulting structure can be dissolved in two ways. In the synthesis-dependent strand annealing (SDSA) pathway, the newly synthesized 3’ end dissociates from the D-Loop as this translocates in the direction of synthesis and collapses. The end then re-anneals with the second, resected 3’ overhang of its original complementary strand. In the double-strand break repair (DSBR) pathway, the second 3’ end, which is resected, but has not invaded, anneals with the displaced strand of the template DNA which allows for its strand extension. Upon gap-filling, ligation of ends results in a double Holliday junction that can be dissolved in two ways: first, it can be dissolved by help of the helicase function of the Bloom syndrome protein (BLM) which migrates the two junctions to each other and topoisomerase TOP3α dissolves the resulting hemicatenane. Secondly, structure specific endonucleases, GEN1 or SLX1-SLX4, can resolve the junctions, leading to either crossover or non-crossover products (Svendsen and Harper, 2010; Li and Heyer, 2008; Jasin and Rothstein, 2013).

Furthermore, HR provides a way of repairing one-ended DSBs. They result from SSBs, which are encountered by a replication fork or by a stalled replication fork that is then converted into a DSB by MUS81-EME1 (Hanada et al., 2007; Petermann and Helleday, 2010). The broken end is resected to invade a homologous region (sister chromatid) analogous to repair of two-sided DSBs to resume replication (Llorente et al., 2008; Petermann and Helleday, 2010).
Figure 6 – Mechanisms of homologous recombination-mediated double-strand break repair. Overview of end resection and strand invasion during homologous recombination (upper part). Processing by double-strand break repair (DSBR – lower left) and resolution of a double Holliday junction by specific endonucleases leading to non-crossover (left) or crossover products (middle), or resolution by BLM helicase and TOP3α (right). Insert: Processing via synthesis dependent strand annealing. Detailed description is found in the text (2.3.1.5.2).

2.3.1.6 Interstrand crosslink repair

Covalent linkage of the two strands of a DNA double helix is induced exogenously by a variety of anti-cancer drugs, including platinum based drugs, mitomycin C (MMC), chloroethylating agents and also through endogenous processes, e.g. by aldehyde metabolites. This leads to a block of the
essential cellular functions transcription and replication and therefore demands repair. ICLs can be recognized throughout the whole cell cycle by the NER protein XPC in the case that the crosslink distorts the DNA (Muniandy et al., 2009) or by CSB (Enoiu et al., 2012) if met by RNAPII. Further, the presence of the ERCC1-XPF nuclease and of the translesion polymerases REV1 and POLζ has been demonstrated to confer ICL-resistance. This indicates a repair mechanism whereby ERCC1-XPF unhooks the ICL by incision in proximity to the lesion and subsequent gap filling by TLS. Nevertheless, ICL repair in G1 is insufficient and most lesions are processed when encountered during replication. Proteins belonging to the FA complementation group initiate replication dependent repair. The replication fork-encountered ICL is first recognized by FANCM, which mediates fork regression resulting in a chicken foot structure. Next, protomers of the heterodimer of FANCD2 and FANCI are monoubiquitinated by the FANCL subunit of the FA core complex (FANCA, FANCB, FANCC, FANCE, FANCF, FANCG and FANCL). Monoubiquitinatated FANCD2 recruits nucleases that promote, most likely, dual incision and unhooking of the ICL. This involves the structure specific endonucleases SLX4-SLX1, XPF-ERCC1 and MUS81-EME1, as well as the Fanconi-associated nuclease (FAN1) which exhibits 5'-3’ exonuclease function. This allows HR-mediated restart of the replication fork, which proceeds across the unhooked lesion with the help of the translesion polymerases REV1 and POLζ. The unhooked lesion is then removed enzymatically by NER or spontaneously by hydrolysis (Deans and West, 2011; Walden and Deans, 2014; Clauson et al., 2013).

2.3.1.7 Translesion Synthesis

In contrast to the aforementioned mechanisms, translesion synthesis does not repair lesions, but enables DNA synthesis across the lesion. The replicative DNA polymerase is exchanged for a low-fidelity DNA polymerase of the type Y family, which additionally lack proofreading exonuclease function. Upon nucleotide insertion opposite the damaged strand, the nascent strand is extended by POLζ for some nucleotides before replicative polymerases complete synthesis. Though being error-prone, TLS prevents collapse of the replication fork and thereby DNA breaks (Sale, 2013).

2.3.2 DNA damage response and cell death

2.3.2.1 DNA damage response

Upon DNA damage induction, e.g. by chemotherapeutics, a network of signaling cascades regulates the cellular response. This comprises recruitment of repair factors, induction of cell cycle arrest, and induction of cell death or differentiation. Two central transducing damage-activated kinases are Ataxia telangiectasia mutated (ATM) and Ataxia telangiectasia and Rad3 related (ATR). The inactive dimerized ATM is activated at sites of MRN-bound DNA ends by autophosphorylation and monomerization (Bakkenist and Kastan, 2003; Lee and Paull, 2005). Activation of ATR takes place in a complex with ATR interacting protein (ATRIP), which binds
RPA-bound single-stranded DNA at resected DSBs or stalled replication forks and promotes subsequent trans-autophosphorylation of ATR (Zou and Elledge, 2003; Ball et al., 2005). Both kinases phosphorylate the histone variant H2AX at serine 139, which regulates retention of DNA repair proteins at the damage site and chromatin organization. As phosphorylated H2AX (γH2AX) spans a region of megabases around a DSB and accordingly thousands of H2AX (Bonner et al., 2008; Rogakou et al., 1999), their immunochemical staining provides a detection method for DSBs. Further critical substrates of ATM and ATR are the checkpoint kinases CHK1 and CHK2, which arrest the cell cycle at different checkpoints (G1-S transition, G2-M transition) by inactivation of cell division cycle phosphatases 25 (cdc25) or by phosphorylation of p53 and subsequent induction of p21Cip1/Waf1. Depending on the damage degree and the cells’ phenotype, CHK activation also leads to apoptosis or senescence induction (Ciccia and Elledge, 2010).

For O\(^6\)-alkylating agents, activation of ATM/ATR and CHK1/2 has been shown. ATR was reported to play the major role in preventing TMZ-induced apoptosis, whereas ATM triggers TMZ-induced autophagy. Phosphorylation of the ATM and ATR downstream target H2AX was observed upon alkylating agent treatment, which for chloroethylating agents appeared earlier than for methylaing agents, most likely because of the requirement of O\(^6\)-lesion processing. Similarly, methylation and chloroethylation induce a G2/M arrest, which again, for O\(^6\)MeG, occurs later, following two rounds of replication (Eich et al., 2013; Knizhnik et al., 2013; Nikolova et al., 2012; Quiros et al., 2010).

2.3.2.2 Apoptosis

Programmed cell death by apoptosis is a way of eliminating cells in the course of cell turnover, embryonic development or severe damage (Wyllie et al., 1980) without causing inflammation (Huynh et al., 2002). It is morphologically characterized by cell and nucleus shrinkage, membrane blebbing and finally by the generation of apoptotic bodies containing cell organelles that are subject to macrophage ingestion (Kerr et al., 1972). Furthermore, degradation of proteins and DNA are intracellular markers of apoptosis, which are mediated by effector caspases-3 and -7 (cysteinyl-aspartate specific protease) that cleave proteins and activate the caspase activated DNase (CAD) (Enari et al., 1998). Two classical ways of effector caspase activation are described: an intrinsic (mitochondrial) pathway which starts with mitochondrial outer membrane permeabilization by oligomerization of the BCL-2 family members BAX and BAK followed by cytoplasmic release of cytochrome C and second mitochondria-derived activator of caspases (SMAC). Cytochrome C binds to apoptosis protease activator protein (APAF-1), resulting in a conformational change of APAF-1 and its heptamerization, which is required for cleavage and activation of the initiator Caspase-9. SMAC contributes to apoptosis by disabling inhibitor of apoptosis proteins (IAP), inhibitors of caspases. For extrinsic activation of apoptosis, extracellular ligands bind to transmembrane death receptors like FASR to trigger their trimerization and subsequent recruitment of its cytoplasmic adaptor protein FAS-activated death domain (FADD). The death inducing
signaling complex (DISC) recruits procaspase-8, which dimerizes and is trans-autoactivated by cleavage that can, in turn, activate caspase-3.

These two classical activation paths converge at the caspase-8 substrate BH3-interacting domain death agonist (BID), whose truncated form interacts with BAX and consequently mediates mitochondrial outer membrane permeabilization (Fuchs and Steller, 2015; Elmore, 2007).

Both pathways of apoptosis induction (intrinsic and extrinsic) have been reported for alkylating agents and are dependent on cell type, p53 status and the agent used. Whereas p53 competent glioblastoma can activate both pathways upon methylating agents, p53 mutant cells are restricted to intrinsic activation. On the other hand, p53 wild-type melanoma cells are also impaired in receptor-mediated apoptosis induction by methylating agents. For chloroethylating agents, p53 status is also essential, though it rather predicts recognition and repair of ICLs and therefore mediates resistance to apoptosis (Batista et al., 2007; Barckhausen et al., 2014; Roos et al., 2007; Naumann et al., 2009; Roos et al., 2011).

2.3.2.3 Necrosis and Necroptosis

Necrosis and Necroptosis are cell death pathways sharing similar characteristic cell morphology, i.e. cytoplasmic swelling and breakage of the cell membrane which results in release of the cell content into its environment, and therefore, local inflammation. Necrosis occurs upon physical damage of a cell and is not regulated. On the other hand, necroptosis is inducible by binding of extracellular ligands to membrane-receptors, which leads to activation of receptor-interacting serine/threonine protein kinase 1 (RIPK1), promoting membrane perforation in a regulated manner (Fuchs and Steller, 2015; Galluzzi and Kroemer, 2008).

2.3.2.4 Senescence

Senescence is a cellular state of permanent cell cycle arrest that the cell enters due to telomere-shortening, DNA damage or oncongene activation. Senescent cells are viable, but non-proliferating and resistant to apoptosis induction. They are characterized by a consistent upregulation of CDK inhibitors p21^{Cip1/Waf1} or p16^{INK4a}, expression of β-galactosidase and senescence-associated heterochromatin foci (Campisi and d'Adda di Fagagna, 2007; d'Adda di Fagagna, 2008). Similar to autophagy, it is not clear whether senescence is beneficial or detrimental in therapy, since senescent cancer cells have been shown to re-enter the cell cycle post-treatment (Wang et al., 2013; Roberson et al., 2005).

Upon TMZ treatment, melanoma and glioblastoma cells enter a senescent-like state (Mhaidat et al., 2007; Hirose et al., 2001a; Hirose et al., 2001b; Knizhnik et al., 2013).
2.3.2.5 Autophagy

Cytoplasmic components and organelles can be degraded by autophagy. The process is initiated by the engulfment of cytoplasmic components in a double-membrane vesicle (autophagosome) that fuses with lysosomes, resulting in the digestion of the autophagosome content. Autophagy is induced upon different kinds of stress, like nutrient starvation or DNA damage (He and Klionsky, 2009). However, it is still being debated whether autophagy is a cell death mechanism, if it only accompanies cell death, or if it provides a cell survival function under stress scenarios (Codogno and Meijer, 2005).

In glioma cells, autophagy was induced upon TMZ and displayed a protective mechanism, since autophagy inhibition increased apoptosis induction (Lin et al., 2012; Kanzawa et al., 2004; Knizhnik et al., 2013).

2.4 Histone deacetylases

Histone deacetylases catalyze the removal of acetyl groups from acetylated lysines in post-translationally modified proteins and oppose the activity of histone acetyl transferases (HAT). Based on phylogenetic development and sequence similarity, HDACs are subdivided into four classes: class I (HDAC1, HDAC2, HDAC3 and HDAC8), class IIa (HDAC4, HDAC5, HDAC7 and HDAC9), class IIb (HDAC6 and HDAC10) and class IV (HDAC11). Class I, II and IV HDACs are zinc (Zn$^{2+}$)-dependent HDACs, whereas class 3 HDACs, or synonymously Sirtuins (SIRT1-7), are dependent upon nicotinamide adenine dinucleotide (NAD$^+$) (Gregoretti et al., 2004; Yang and Seto, 2007). Their substrates are histones as well as non-histone proteins. Histones are nuclear proteins forming the nucleosome core, around which, the DNA is wrapped to provide compaction. The acetylation of histone tails impacts directly on chromatin structure by two means: acetylated lysines in histone tails are not positively charged like non-modified lysines, which decreases the interaction between negatively charged DNA phosphate backbone and positively charged histone tails (Hong et al., 1993). Secondly, acetylation of histone 4 at lysine 16 (H4K16ac) inhibits chromatin compaction into 30 nm fibers, most likely by disrupting the interaction of the positively charged lysine with an acidic patch of histone 2A (H2A) in a neighboring nucleosome (Shogren-Knaak et al., 2006; Tremethick, 2007). An indirect mechanism of HDACs on transcription has been described: HDACs are parts of multiprotein transcriptional repressor complexes like mSin3, N-CoR or CoREST (Hayakawa and Nakayama, 2011). On the other hand, HATs are associated with transcriptional activators like the HAT p300 with the transcription factor IID (Pazin and Kadonaga, 1997; Struhl, 1998). These features indicate a better accessible DNA for transcription factors and transcriptionally active chromatin in the absence of HDAC activity. Indeed, transcription is regulated by histone acetylation and histone acetylation is, therefore, regarded as an epigenetic mechanism. However, upon inhibition of HDACs (retained
acetylation), the number of genes upregulated is similar to those downregulated (Peart et al., 2005; Bolden et al., 2013). This might be explained by the histone-independent activity on thousands of non-histone substrates. These include post translational modifications on proteins such as HDACs, HATs, methyltransferase, demethylases, E3-ligases, chromatin remodelers, cell cycle regulators, DNA repair proteins and others (Choudhary et al., 2009). Even though only a minor part of these acetylations has been characterized as to their function, protein acetylation is already linked to a variety of effects including protein localization, enzyme activity, protein stability and interactions with other proteins or DNA (Spange et al., 2009).

2.4.1 Histone deacetylases and cancer

Given the plethora of cellular functions that are affected by acetylation and inevitably by HDACs, it is not surprising that they are associated with different diseases, including neurological and immunological diseases as well as cancer (Falkenberg and Johnstone, 2014). Contrary roles of HDACs in cancer have been described: studies investigating genetically modified mice showed that specific knockdown/knockout of HDAC1 and/or HDAC2 in thymocytes or lymphoid stem cells and progenitors promotes and accelerates the development of hematological tumors (Heideman et al., 2013; Dovey et al., 2013; Santoro et al., 2013). Furthermore, loss of Hdc3 in mouse liver was associated with genomic instability, a cancer hallmark, and with the development of hepatocellular carcinomas (Bhaskara et al., 2010). On the other hand, elevated expression of class I HDACs in human solid tumors, including prostate, colorectal cancer, lung adenomas, liver or breast cancer, is associated with decreased disease free or overall survival (Weichert et al., 2008a; Weichert et al., 2008b; Krusche et al., 2005; Minamiya et al., 2011; Rikimaru et al., 2007). Based on this, HDAC inhibitors have been developed as potential cancer therapeutics and have been attributed a variety of anti-tumorigenic effects.

2.4.2 Histone deacetylase inhibitors

Based on their chemical structure, HDAC inhibitors are divided into hydroxamic acids (Dacinostat, Vorinostat), cyclic peptides (Romidepsin), aliphatic acids (sodium butyrate, valproic acid [VPA], used in this research) and benzamides (Entinostat [MS-275] used in this research, Mocetinostat) all of which generally act by binding the catalytic Zn\(^{2+}\) and interacting with the lipophilic tube lying between the active site and the surface of the HDAC (Bieliauskas and Pflum, 2008; Finnin et al., 1999; Bressi et al., 2010). Due to characteristics like size and polarity, HDAC inhibitors have different selectivities, ranging from pan-inhibition (Dacinostat) to the selective inhibition of HDAC1, HDAC2 and HDAC3 for example with MS-275 (Bradner et al., 2010).

2.4.2.1 Valproic acid

VPA is a short chain fatty acid used for the treatment of epilepsy and bipolar-disorder and was shown to inhibit all class I HDACs (1; 2; 3 and 8) (Bradner et al., 2010; Göttlicher et al., 2001).
The anti-epileptic activity relies on VPA’s ability to penetrate the blood-brain-barrier and to increase levels of the inhibitory neurotransmitter γ-aminobutyrate by preventing its degradation and promoting its synthesis (Mesdjian et al., 1982; Nau and Loscher, 1982). The therapeutic serum concentration lies between 0.3 mM and 0.7 mM, which is sufficient to inhibit HDAC activity in vitro and in vivo (Bradner et al., 2010; Bug et al., 2005). Adverse effects caused by VPA are neurological and gastrointestinal in origin, namely dizziness, drowsiness, insomnia, nausea or vomiting (Nanau and Neuman, 2013).

2.4.2.2 Entinostat (MS-275)

MS-275 is a benzamide HDAC inhibitor of HDAC1, HDAC2 and HDAC3 at in vitro inhibitory concentrations < 1 µM (Bradner et al., 2010). Currently MS-275 is under investigation in clinical phase I-III trials, primarily against hematological cancers, breast and lung cancer in monotherapies as well as combination therapies, e.g. with DNA-methylation interference by 5-azacytidine (http://clinicaltrials.gov/, 2015). Yet, initial phase I and II studies revealed that plasma concentrations from 5-350 nM can be achieved and that nausea, vomiting and fatigue were common adverse effects that occurred especially at high doses (Ryan et al., 2005; Hauschild et al., 2008; Kummar et al., 2007).

2.4.2.3 Histone deacetylase inhibitors and cancer therapy

Early in vitro studies ascribed anti-neoplastic effects of HDAC inhibitors to the activation of apoptosis and growth arrest. In vivo studies expanded the anti-tumorigenic effect of HDAC inhibition as they were shown to act anti-angiogenic. A summary of the manifold consequences of HDAC inhibition is given in Figure 7.

Apart from the anti-neoplastic effects of HDAC inhibitors on their own, the following effects of HDAC inhibitors justify combination approaches with conventional therapy options that in a preliminary study has already been proven to be beneficial for two melanoma cell lines (Barckhausen, 2012).

2.4.2.3.1 Histone deacetylase inhibitors and apoptosis

HDAC inhibitors induce apoptosis via the intrinsic and extrinsic pathway in tumor cells (Bolden et al., 2013; Brazelle et al., 2010; Zhang et al., 2004; Kerr et al., 2012; Gillespie et al., 2006). An established mediator is p53, which is acetylation-dependently stabilized and therefore capable of inducing pro-apoptotic BCL-2 members and repressing anti-apoptotic BCL-genes, which is often observed in HDAC-induced apoptosis (Juan et al., 2000; Brazelle et al., 2010; Bolden et al., 2013; Zhang et al., 2004). However, HDAC inhibitor-induced mitochondrial apoptosis is not limited to p53-wild-type cells as HDAC inhibitors also induce apoptosis in p53-deficient tumor cells (Vrana et al., 1999; Sonnemann et al., 2014). Death receptor-mediated apoptosis is inducible by HDAC inhibitors, which is also independent of the cell’s p53 status and is commonly explained by an
upregulation of death receptors (DR5, FAS) and their respective ligands (TNF-related apoptosis-inducing ligand [TRAIL], FAS-Ligand) (Insigna et al., 2005; Nebbioso et al., 2005). Actual cell death execution may result from a combination of the aforementioned pathways, depending on cell type and genetic background, whereas other transformed cells are refractory to HDAC inhibitor-induced cell death (Fantin and Richon, 2007).

Figure 7 – Overview of histone deacetylase function and effects of histone deacetylase inhibitors. Detailed descriptions are given in the text (2.4).

2.4.2.3.2 Histone deacetylase inhibitors and cell cycle

In addition to the aforementioned effects of HDAC inhibitors on apoptosis, HDAC inhibitors were also shown to arrest cells at the G1/S or the G2/M cell cycle checkpoint. Retention of cells in G1 is mediated by an induction of the cyclin-dependent kinase inhibitors (CDKI) p21^{CIP1/WAF1} and p27^{KIP1} and a decrease in the G1-S-mediating cyclin D. HDAC inhibitors induce p21^{CIP1/WAF1} by either p53 or SP1 transcription factor (Rosato et al., 2003; Finzer et al., 2001; Zhao et al., 2006; Huang et al., 2000; Sandor et al., 2000; Newbold et al., 2014), which then acts as an inhibitor of cyclin D:CDK4/6 and cyclin E:CDK2 complexes to halt cells from entering and progressing through S-phase. Cyclin D seems to be downregulated by HDAC inhibitors by acetylation of its transcription factor NF-κB or by proteasomal degradation of Cyclin D (Hu and Colburn, 2005; Alao et al., 2006). Even though G2/M arrests were likewise reported upon HDAC inhibition, its underlying mechanism is still unclear. It has been reported that transcriptional downregulation of
mitosis-promoting cyclin B is responsible for G2 arrest (Noh and Lee, 2003). Other reasons for the HDAC inhibitor mediated G2/M arrest are related to Aurora kinases, which are involved in mitotic chromatin condensation. HDAC inhibition either downregulates Aurora kinases or the lack of histone 3 (H3) deacetylation reduces Aurora kinase substrates, both of the mechanisms would lead to the prevention of mitosis and an induction of a G2 arrest (Cha et al., 2009; Li et al., 2006).

2.4.2.3.3 Histone deacetylase inhibitors and DNA repair

Owing to the differential effects of protein acetylation, HDAC inhibitors mediate their influence on DNA repair by three mechanisms: chromatin remodeling, transcriptional regulation of DNA repair genes and post-translational acetylation of DNA repair proteins. Several studies indicate that HDAC inhibitors transcriptionally downregulate the NHEJ proteins KU70, KU80 and DNA-PK and/or the HR proteins RAD51 and BRCA2, which increases radio-sensitivity of cancer cells (Adimoolam et al., 2007; Blattmann et al., 2010; Kachhap et al., 2010; Chinnaiyan et al., 2005; Munshi et al., 2005; Munshi et al., 2006).

The repair of damaged heterochromatic DNA requires accessibility of repair factors to the damaged sites. Thus, histone modifications were suspected to support DNA repair as they regulate the opening of chromatin. Indeed, acetylation of histone 3 at lysine 56 (H3K56/H3K56ac) was found to contribute to reassembling of nucleosomes after completion of DNA repair or replication in yeast. Further, defects in H3K56 acetylation lead to a higher sensitivity of yeast to DNA damaging agents (Li et al., 2008; Chen et al., 2008; Masumoto et al., 2005). In human cells, the role of H3K56 acetylation in the DNA damage response is unclear. Some studies show an increase of H3K56 acetylation by CBP/p300 HAT upon DNA damage induced by hydroxyurea, γ-radiation or MMS (Das et al., 2009; Vempati et al., 2010) that is reversed by class I or class III HDACs. Others have observed that H3K56ac is deacetylated by HDAC1 and HDAC2 upon DNA damage (Tjeertes et al., 2009; Miller et al., 2010). Interference of deacetylation by siRNA knockdown of HDAC1 and HDAC2 or addition of the HDAC inhibitor sodium butyrate is associated with impaired NHEJ, prolonged checkpoint signaling and sensitization to DNA damage (Miller et al., 2010).

Despite the knowledge of multiple acetylated DNA repair proteins, the role of specific acetylations remains widely unknown (Choudhary et al., 2009). A summary of DNA repair proteins and the consequence of their acetylation are shown in Table 1.

<table>
<thead>
<tr>
<th>Protein</th>
<th>HDAC</th>
<th>HAT</th>
<th>Functional consequence</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>CtIP</td>
<td>SIRT6</td>
<td>?</td>
<td>Constitutively acetylated, removal upon damage promotes end resection</td>
<td>(Kaidi et al., 2010)</td>
</tr>
<tr>
<td>Sae2 (yeast CtIP homolog)</td>
<td>Hda1, Rpd3</td>
<td>Gcn5</td>
<td>Acetylation mediates degradation by autophagy and impairs end resection</td>
<td>(Robert et al., 2011)</td>
</tr>
<tr>
<td>MSH2</td>
<td>HDAC6</td>
<td>?</td>
<td>Overlapping acetylation and ubiquitylation sites are deacetylated and ubiquitylated by HDAC6 leading to decreased MSH2 half-life and MNNG resistance</td>
<td>(Zhang et al., 2014)</td>
</tr>
<tr>
<td>MSH2</td>
<td>HDAC10</td>
<td>HBO1?</td>
<td>Acetylation stimulates repair</td>
<td>(Radhakrishnan et al., 2015)</td>
</tr>
<tr>
<td>KU70</td>
<td>Sirtuins</td>
<td>CBP, PCAF</td>
<td>Acetylation induced upon UV at C-terminal linker, loss of interaction with BAX that is released to mitochondria to induce apoptosis</td>
<td>(Cohen et al., 2004)</td>
</tr>
<tr>
<td>KU70</td>
<td>HDAC6</td>
<td>CBP, PCAF</td>
<td>KU70 acetylation interrupts FLIP-KU70 complex leading to FLIP proteasomal degradation and apoptosis</td>
<td>(Kerr et al., 2012)</td>
</tr>
<tr>
<td>KU70</td>
<td>?</td>
<td>?</td>
<td>Acetylation prevents DNA binding and repair and sensitizes to DNA damage</td>
<td>(Chen et al., 2007b)</td>
</tr>
<tr>
<td>NBS1</td>
<td>SIRT1</td>
<td>PCAF</td>
<td>Acetylation prevents NBS1 phosphorylation upon irradiation and increases sensitivity to irradiation</td>
<td>(Yuan et al., 2007)</td>
</tr>
<tr>
<td>POLβ</td>
<td>?</td>
<td>p300</td>
<td>Acetylation impairs 5'dRP lyase activity</td>
<td>(Hasan et al., 2002)</td>
</tr>
<tr>
<td>PCNA</td>
<td>?</td>
<td>CBP, (p300)</td>
<td>Acetylation upon UV-radiation promotes DNA synthesis and subsequent proteasomal degradation</td>
<td>(Cazzalini et al., 2014; Hasan et al., 2001)</td>
</tr>
</tbody>
</table>
2.5 Aim of the study

A cornerstone of cancer treatment is DNA damaging therapies. In the case of malignant melanomas and glioblastomas these comprise methylating and chloroethylating agents as well as ionizing radiation. However, since both tumor entities weakly respond to therapy, intervention remains mostly palliative. Research on tumor cells already revealed multiple mechanisms that protect them from DNA damage. These include DNA repair enzymes, which repair cytotoxic lesions, or dysregulation of apoptosis, preventing cells from dying. However, to date, these resistance factors are not therapeutically targetable. A possible way of reversing intrinsic resistance is provided by a class of small molecules that target histone deacetylases. High expression of HDACs is linked to a poor prognosis and their inhibition was shown to enhance the response of colon and lung cancer cells to ionizing radiation. Based on a preliminary study that suggested a synergistic effect of the methylating agent Temozolomide with the HDAC inhibitor valproic acid in two melanoma cell lines, this study is aimed at investigating the effect of HDAC inhibitors on DNA damaging insults. Since malignant melanoma and glioblastoma cells are remarkably resistant, the potential of HDAC inhibitors for alleviating this resistance in these cancer models will be examined here. The combination with methylating agents will be of utmost interest as methylating agents are an integral part of therapy for these tumors. The HDAC inhibitors VPA and Entinostat have been shown to be well tolerated by patients and will therefore be used to address the following questions.

- Is there a synergistic effect of HDAC inhibitors and DNA damaging therapies, in particular with the methylating agent Temozolomide, in melanoma or glioblastoma cells? Is there a mechanistic difference between possible synergistic effects in these tumor entities and consequently, is a possible synergistic effect limited to characteristic genotypes of the tumor entity?

- Do HDAC inhibitors target specific DNA damage resistance pathways in these cancer types? The influence of HDAC inhibitors on DNA repair, DNA damage signaling and apoptosis will be elucidated in detail.
3 Materials and Methods

3.1 Materials

3.1.1 Chemicals and Consumables

If not stated otherwise, chemicals used for this work were obtained from Carl Roth GmbH & CoKG (Karlsruhe, Germany) or Sigma-Aldrich (Steinheim, Germany). Plastic ware was obtained from Greiner BioOne GmbH (Frickenhausen, Germany) and Eppendorf AG (Hamburg, Germany). Cell culture reagents were obtained from Gibco/ThermoFisherScientific (Waltham, MA, USA).

3.1.2 Equipment

<table>
<thead>
<tr>
<th>Description</th>
<th>Commercial Name</th>
<th>Supplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>¹³⁷Cs source</td>
<td>Gammacell 2000</td>
<td>Molsgaard medical, Copenhagen, Denmark</td>
</tr>
<tr>
<td>Analytical balances</td>
<td>Sartorius analytical</td>
<td>Sartorius, Göttingen, Germany</td>
</tr>
<tr>
<td>Blotting chamber</td>
<td>TransBlot Cell</td>
<td>Biorad, Hercules, CA, USA</td>
</tr>
<tr>
<td>Cell disruptor</td>
<td>Sonifier cell disruptor</td>
<td>Branson Ultrasonics, Danbury, CT, USA</td>
</tr>
<tr>
<td>Centrifuges</td>
<td>Hereaus Megafuge1.0</td>
<td>ThermoFisherScientific, Waltham, MA, USA</td>
</tr>
<tr>
<td></td>
<td>Refrigerated, 5402</td>
<td>Eppendorf, Hamburg, Germany</td>
</tr>
<tr>
<td></td>
<td>Microcentrifuge Sprout</td>
<td>Heathrow Scientific, Vernon Hills, IL, USA</td>
</tr>
<tr>
<td>CO₂ incubator</td>
<td>HeraCell</td>
<td>ThermoFisherScientific, Waltham, MA, USA</td>
</tr>
<tr>
<td>Electrophoresis chamber</td>
<td>Tetra Vertical Electrophoresis Cell</td>
<td>Biorad, Hercules, CA, USA</td>
</tr>
<tr>
<td>Flow cytometer</td>
<td>FACS CANTO II</td>
<td>BD Biosciences, Heidelberg, Germany</td>
</tr>
<tr>
<td>Freezer</td>
<td>ProfiLine 7082-577-00</td>
<td>Liebherr, Ochsenhausen, Germany</td>
</tr>
<tr>
<td>Heating block</td>
<td>Thermostat 5320</td>
<td>Eppendorf, Hamburg, Germany</td>
</tr>
<tr>
<td>Infrared imaging system</td>
<td>Odyssey 9120</td>
<td>LI-COR, Bad Homburg, Germany</td>
</tr>
<tr>
<td>Inverse microscope</td>
<td>Wilovert A</td>
<td>Hund, Wetzlar, Germany</td>
</tr>
<tr>
<td>Laminar flow cabinet</td>
<td>HERA safe</td>
<td>ThermoFisherScientific, Waltham, MA, USA</td>
</tr>
<tr>
<td></td>
<td>Nuaire</td>
<td>NuAire, Plymouth, MN, USA</td>
</tr>
<tr>
<td>Laser scanning microscope</td>
<td>LSM 710</td>
<td>Carl Zeiss GmbH, Jena, Germany</td>
</tr>
<tr>
<td>Liquid scintillation analyzer</td>
<td>Tri-Carb 2100TR</td>
<td>Canberra-Packard, Dreieich, Germany</td>
</tr>
<tr>
<td>Microplate reader</td>
<td>Multiskan EX</td>
<td>ThermoFisherScientific, Waltham, MA, USA</td>
</tr>
<tr>
<td>Power supply</td>
<td>PowerPac HC</td>
<td>Biorad, Hercules, CA, USA</td>
</tr>
<tr>
<td>Refrigerator</td>
<td>Premium NoFrost</td>
<td>Liebherr, Ochsenhausen, Germany</td>
</tr>
</tbody>
</table>
Materials and Methods

<table>
<thead>
<tr>
<th>Thermal Cycler</th>
<th>CFX96 C1000 Real-Time PCR Detection System</th>
<th>Biorad, Hercules, CA, USA</th>
</tr>
</thead>
<tbody>
<tr>
<td>T100 Thermal Cycler</td>
<td></td>
<td>Biorad, Hercules, CA, USA</td>
</tr>
<tr>
<td>Tissue disruptor</td>
<td>TissueLyser LT</td>
<td>Qiagen, Hilden, Germany</td>
</tr>
<tr>
<td>Ultra-low temperature freezer</td>
<td>Forma 905</td>
<td>ThermoFisherScientific, Waltham, MA, USA</td>
</tr>
<tr>
<td>UV-Vis-Spectrophotometer</td>
<td>NanoDrop 2000</td>
<td>ThermoFisherScientific, Waltham, MA, USA</td>
</tr>
<tr>
<td>Vortex mixer</td>
<td>VORTEX 1</td>
<td>VWR, Darmstadt, Germany</td>
</tr>
<tr>
<td></td>
<td>Vortex-Genie</td>
<td>Bender & Hobein GmbH, Ismaning, Germany</td>
</tr>
<tr>
<td>Water bath</td>
<td>3044</td>
<td>Kötttermann, Uetze/Hänigsen, Germany</td>
</tr>
</tbody>
</table>

3.1.3 Software

<table>
<thead>
<tr>
<th>Name and version</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ascent Software Version 2.6</td>
<td>ThermoFisherScientific, Waltham, MA, USA</td>
</tr>
<tr>
<td>BD FACSDIVA SOFTWARE (Version 6)</td>
<td>BD Biosciences, Heidelberg, Germany</td>
</tr>
<tr>
<td>Cell^A</td>
<td>Olympus Soft Imaging Solutions, Münster, Germany</td>
</tr>
<tr>
<td>CFX Manager software (Version 3.1)</td>
<td>Biorad, Hercules, CA, USA</td>
</tr>
<tr>
<td>ChemSketch 2012 (Version 14.01)</td>
<td>ACD/Labs, Toronto, ON, Canada</td>
</tr>
<tr>
<td>EndNote (Version 9.0.0)</td>
<td>Thomson Reuters, New York City, NY, USA</td>
</tr>
<tr>
<td>ModFit LT for Mac (Version 3.3.11)</td>
<td>Verity Sofware House, Topsham, ME, USA</td>
</tr>
<tr>
<td>PRISM 5 for Windows (Version 5.01)</td>
<td>La Jolla, CA, USA</td>
</tr>
<tr>
<td>Zen 2012 (blue edition)</td>
<td>Carl Zeiss GmbH, Jena, Germany</td>
</tr>
</tbody>
</table>

3.2 Methods

3.2.1 Cell Culture

Human malignant melanoma and glioblastoma cell lines were cultured in the appropriate cell culture medium (3.2.1.1) supplemented with 10% fetal calf serum (FCS) in a humidified, 5% CO₂ atmosphere at 37 °C. To prevent confluency, cells were passaged, according to proliferation characteristics of the cell line, 2-3 times a week in a ratio of 1:5-1:20 by washing with phosphate buffered saline (PBS), proteolytic detachment with trypsin (0.5 g/l, Sigma-Aldrich, Steinheim, Germany) in presence of ethylenediaminetetraacetic acid (EDTA) (0.2 g/l) and resuspension in FCS-containing medium. For cryopreservation, exponentially growing cells were likewise detached.
and resuspended in FCS-containing medium. After sedimentation of the cells by centrifugation (4 min, 1000 x g), cells were resuspended in FCS-containing medium + 10 % dimethylsulfoxide (DMSO) for cryoprotection and 1.5 ml aliquots thereof were immediately transferred to a -80 °C deep freezer in a passive freezer containing isopropanol for retarded chilling. After 48 h, cells were transferred to liquid nitrogen for long-term storage. Cryopreserved cells were thawed at 37 °C in a water bath and diluted with FCS-supplemented medium. Cells were sedimented by centrifugation and the supernatant (containing medium, FCS and DMSO) was removed and replaced by the appropriate cell culture medium. Cells were allowed to recover for at least 7 days. Cell lines were cultured for a maximum of 2-3 months and were then replaced by a new cryopreserved batch. Before use of a new batch of cells for experiments, they were checked for mycoplasma using Venor®GeM Classic kit (mira biolabs®, Berlin, Germany).

Primary melanocytes and culture reagents were obtained from Gibco/ThermoFisherScientific (Waltham, MA, USA). Melanocytes were kept in Medium 254 supplemented with 1 % human melanocyte growth supplement II at a humidified atmosphere at 37 °C, 5 % CO₂ and reduced oxygen content of 5 % in order to minimize oxidative stress. Medium was refreshed every 3 days. Melanocytes were passaged by washing them with PBS and detaching them with trypsin in the presence of EDTA. Trypsin was inactivated by addition of Trypsin neutralizer solution, which was subsequently removed by centrifugation. Cell sediment was then resuspended in growth medium.

3.2.1.1 Cell lines

<table>
<thead>
<tr>
<th>Cell line</th>
<th>Medium</th>
<th>Source</th>
<th>Described in</th>
</tr>
</thead>
<tbody>
<tr>
<td>Melanoma cell lines</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A375</td>
<td>DMEM</td>
<td>ATCC, Manassas, VA, USA</td>
<td>(Roos et al., 2014; Gaddameedhi et al., 2010)</td>
</tr>
<tr>
<td>A2058</td>
<td>DMEM</td>
<td>Dr. W. K. Kaufmann (Dept. of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, NC, USA).</td>
<td>(Gaddameedhi et al., 2010; Roos et al., 2014)</td>
</tr>
<tr>
<td>SK-Mel187</td>
<td>DMEM</td>
<td>(Gaddameedhi et al., 2010; Roos et al., 2014)</td>
<td></td>
</tr>
<tr>
<td>Mel537</td>
<td>RPMI-1640</td>
<td>(Gaddameedhi et al., 2010; Roos et al., 2014)</td>
<td></td>
</tr>
</tbody>
</table>
Materials and Methods

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>D05</td>
<td>RPMI-1640</td>
<td>Prof. C.W. Schmidt (Cancer Immunotherapy, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia) via Prof. T. Wölfel (Hematology/Oncology/Pneumology, University Medical Center, Mainz, Germany) (Barckhausen et al., 2014; Naumann et al., 2009)</td>
</tr>
<tr>
<td>G361</td>
<td>RPMI-1640</td>
<td>ATCC, Manassas, VA, USA (Naumann et al., 2009; Ji et al., 2012)</td>
</tr>
</tbody>
</table>

Glioblastoma cell lines

<table>
<thead>
<tr>
<th>Cell Line</th>
<th>Medium</th>
<th>Source</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>U87MG</td>
<td>DMEM</td>
<td>CLS, Eppelheim, Germany</td>
<td>(Batista et al., 2007; Ishii et al., 1999)</td>
</tr>
<tr>
<td>LN229</td>
<td>DMEM</td>
<td>ATCC, Manassas, VA, USA</td>
<td>(Batista et al., 2007; Ishii et al., 1999)</td>
</tr>
<tr>
<td>LN308</td>
<td>DMEM</td>
<td>Dr. M. Hermisson (Department of General Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, School of Medicine, Tübingen, Germany)</td>
<td>(Batista et al., 2007; Ishii et al., 1999)</td>
</tr>
<tr>
<td>LN428</td>
<td>DMEM</td>
<td></td>
<td>(Ishii et al., 1999)</td>
</tr>
</tbody>
</table>

3.2.1.2 Treatments and irradiation

3.2.1.2.1 Histone deacetylase inhibitor treatment

Cells were seeded at an appropriate number, according to growth characteristics of the cell line 24 h before treatment to allow attachment. For pretreatment, VPA (sterile filtered stock solution of 100 mM in double distilled H₂O [ddH₂O]) or MS-275 (Selleckchem, Houston, TX, USA, stock solution of 5 mM in DMSO) was added and replaced every 48 h by exchange of medium containing the respective drug. Fast growing cells required passaging during 168 h pretreatments. One day before the end of the pretreatment period, cells were seeded for further treatment/irradiation, kept in HDAC inhibitor-containing medium, which was removed before further treatment. Controls were seeded, passaged and reseeded according to pretreated cells. For co-treatment, cells were likewise treated with HDAC inhibitor 24 h after seeding, but the drug remained in the medium also after further treatment, which occurred 1 h after HDAC inhibitor addition (Figure 8).
3.2.1.2.2 Treatment with alkylating agents

Unless otherwise stated, cells were seeded 24 h prior to treatment with 10 μM O⁶-benzylguanine (O⁶BG, 10 mM stock solution in DMSO) to deplete MGMT. In case of HDAC inhibitor pretreatment, medium was changed in order to remove the inhibitor before O⁶BG addition. One hour after O⁶BG, the alkylating agent was added. Temozolomide (Schering-Plough, Kenilworth, NJ, USA) was prepared by dissolving in DMSO and further diluting, 1:3, in sterile H₂O to 35 mM. Aliquots of 35 mM stock solution were stored at -80 °C until use. Fotemustine (Servier Research, International, Neuilly-sur-Seine, France) was dissolved immediately before use in ethanol to a 32 mM working solution.

3.2.1.2.3 Olaparib treatment

Olaparib (Selleckchem, Houston, TX, USA) was dissolved in DMSO to a 10 mM solution and stored in aliquots at -80 °C. It was added to pretreated cells after HDAC inhibitor removal by medium exchange.

3.2.1.2.4 Irradiation

Adherent cells were irradiated in medium with γ rays using a ¹³⁷Cs source.

3.2.1.3 Cell growth

Cells were seeded at a defined density of 50 000 cells in 60 mm cell culture dishes and allowed to attach 24 h before treatment. Number of cells was assessed every 24 h by counting using a
hemocytometer and cell numbers were related to pre-treatment number (0 h). Doubling times were calculated using PRISM software.

3.2.1.4 Colony Formation Assay

Cells were seeded in 60 mm cell culture plates at a defined density (200 cells for controls, 400 cells for 5 µM TMZ and 800 cells for 10 µM TMZ), resulting in approximately 50-200 colony forming units. After six hours incubation that allowed cell attachment and conditioning of the medium, cells were treated and allowed to grow to colonies for 10-14 days depending on the growth characteristics of the cell line. Then, growth medium was removed and cells were fixed with a methanol-acetic acid-water solution (1:1:8, V:V:V) for 30 min. Colonies were stained with 1.25 % Giemsa and 0.125 % Crystal violet for 15 min and subsequently rinsed with water. Stained colonies that contained at least 50 cells were counted for control and treatments. Clonogenic survival was calculated with respect to the seeding efficiency that was obtained from untreated samples.

3.2.1.5 Transfection

Stably transfected clones were generated by transfection of cells at a confluence between 60-80 percent. Knockdown of RAD51 was achieved using a shRAD51 sequence targeting RAD51 mRNA expressed by the pSUPER vector backbone (Quiros et al., 2011). Antibiotic resistance for selection of positive clones was introduced by co-transfection with the pSUPER.neo plasmid with a lower plasmid amount (1.8 µg pSUPER-RAD51sh + 0.2 µg pSUPER.neo, plasmids gratefully received from Dr. Steve Quiros). The pDRGFP plasmid for flow cytometric detection of HR-mediated DSB repair (Pierce et al., 1999) addgene #26475, plasmid gratefully received from Dr. Wynand Roos) provided the repair substrate and puromycin selector and 1 µg DNA was used for transfection. All transfections of cells were performed using the Effectene® transfection reagent (Qiagen, Hilden, Germany) according to manufacturer’s protocol. One day after transfection, cells were re-passaged 1:6 and another 24 h later the selective antibiotic was added (G418 in A375-1.5 µM, Puromycin: A375-34.7, D05-9.3 µM). Upon colony formation, clones were selected and transferred to a 24 well plate and expanded for cryopreservation and testing. RAD51 knockdown was verified by western blotting.

Cells transfected with pDRGFP for HR activity measurement required transient transfection with an I-SceI expressing plasmid (pCβASceI, described in (Richardson et al., 1998), addgene #26477, provided by Dr. Wynand Roos). Cells were transfected with 1 µg DNA using Effectene® transfection reagent (Qiagen, Hilden, Germany) according to the manufacturer’s instructions.

All stably transfected cells were kept in selective antibiotic during culture, but not during the course of an experiment.
3.2.2 Flow cytometry analyses

3.2.2.1 Apoptosis and cell cycle detection

3.2.2.1.1 Propidium iodide staining

Propidium iodide enters ethanol-fixed cells and intercalates into DNA, which multiplies its fluorescence and therefore allows measurement of a cell’s DNA content by flow cytometry. A typical cell cycle profile of unperturbed cells shows a G1 (2n) and G2-peak (4n). The G2-peak shows double the fluorescence intensity of the G1 peak and S-phase cells show fluorescence intensities between the G1 and the G2 peaks. Cells with a subdiploid DNA content are regarded as apoptotic due to DNA fragmentation and degradation during apoptosis (Nicoletti et al., 1991; Krishan, 1975).

Cells were detached and combined with the cells in the supernatant medium and sedimented as described earlier. Then, cell sediments were resuspended in 20 µl PBS and fixed with ice-cold 80% ethanol by adding 1 ml of the ethanol while vortexing. Samples were stored at –20°C awaiting staining. To this end, 2 ml of PBS were added to the cell suspension and cells were sedimented by centrifugation (5 min, 1500 x g). Cells were resuspended in PBS containing RNase A (30 µg/ml working concentration, 10 mg/ml in H₂O stock concentration stored at -20°C). RNA digestion was performed for 30 min at room temperature (RT). Propidium iodide (working concentration of 25 µM, stock concentration 50 µg/ml in PBS at 4°C) was added to the cell suspension and kept in the dark and on ice until analysis by flow cytometry (maximum 30 min). Apoptosis measurement by Sub-G1 content was analyzed using BD FACSDiva™ software and cell cycle distribution was analyzed using ModFit LT™ software.

3.2.2.1.2 AnnexinV-FITC/Propidium iodide double-staining

An early event in apoptosis is flipping of phosphatidylserine from the inner cytoplasmic facing membrane to the outer cellular facing membrane, which marks the cell for phagocytosis by macrophages. AnnexinV binds to phosphatidylserine on the cell surface, but also to intracellular phosphatidylserine if the membrane integrity is lost. Membrane integrity is lost in cells undergoing necrosis or when apoptosis has progressed beyond the point where macrophages would have removed them from the cell population in a physiological environment. In order to discriminate between apoptotic cells and necrotic/late apoptotic cells the DNA intercalator PI is added to the cells. PI is excluded from viable cells but not from dead cells and, therefore, marks late apoptotic or necrotic cells (Vermes et al., 1995).

Cells were detached and collected as described and washed with 1 ml PBS. For binding of AnnexinV-FITC, sedimented cells were resuspended in 50 µl binding buffer (10 mM 4-(2-hydroxyethyl)-1-piperazinethanesulfonic acid [HEPES] pH 7.4, 140 mM NaCl, 2.5 mM CaCl₂,
Materials and Methods

0.1 % bovine serum albumin [BSA]) containing 2.4 µl AnnexinV-FITC (Miltenyi, Bergisch Gladbach, Germany). After 20 min incubation on ice and in the dark, PI (in 430µl binding buffer) was added, yielding a final concentration of 1.5 µM PI. Cells were kept in the dark and on ice until flow cytometry analysis. Data were analyzed using BD FACSDiva™ software. Double-negative cells were regarded as viable, FITC-only positives were regarded as apoptotic and FITC/PI double-positives were regarded as late apoptotic/necrotic.

3.2.2.2 Homologous recombination assay

To measure the capacity of cells to repair DSBs by HR, cells with a stably integrated pDRGFP plasmid were used (see section 3.2.1.5). The plasmid bears two non-functional GFP genes: one truncated, the other containing a recognition site for I-SceI endonuclease. Upon introduction of an I-SceI expressing plasmid, the endonuclease cleaves the modified GFP gene leading to a DSB. If this is repaired by HR, with the use of the sequence of the truncated GFP gene, a functional GFP protein is generated, allowing analysis by flow cytometry. Cells were analyzed 48 h (A375) or 72 h (D05) after transfection with pCβASceI, which took into account their differences in proliferation rate. Cells were detached and washed with PBS and measured by flow cytometry. Data were analyzed with BD FACSDiva™ software.

3.2.3 Protein analysis

3.2.3.1 Protein extracts

3.2.3.1.1 Total protein extraction

Cells were detached, sedimented by centrifugation at 4 °C followed by medium removal and flash frozen in liquid nitrogen. Pellets were stored at -80 °C until protein extraction. For protein extraction, cells were resuspended in extraction buffer (20 mM Tris(hydroxymethyl)aminomethane [TRIS] HCl pH 8.5, 1 mM EDTA, 5 % glycerine, 1 mM β-Mercaptoethanol, 10 µM Dithiothreitol [DTT], 1 x protease inhibitor cOmplete™). For disruption, the suspension was sonicated on ice (three times 10 pulses at duty cycle 40 % and output control 4) and afterwards centrifuged (10 min, 4 °C, 16000 x g) to sediment remaining debris. The supernatant extract was stored at -80 °C.

For protein extraction from in vivo tumor samples, pieces of 2-4 mm³ were disrupted in 1 ml extraction buffer (20 mM TRIS HCl pH 8.5, 1 mM EDTA, 5 % glycerine, 1 mM β-Mercaptoethanol, 10 µM DTT, 1 x protease inhibitor cOmplete™) by Qiagen Tissue Lyser and further sonicated and cleared from debris as described above.

3.2.3.1.2 Nuclear protein extraction

Cell pellets were collected as described, washed in PBS and stored at -80 °C until extraction. Cell pellets were resuspended in nuclear extraction buffer (20 mM TRIS HCl pH 8.5, 1 mM EDTA, 1 mM β-Mercaptoethanol, 10 µM DTT, 1 x protease inhibitor cOmplete™). In order to damage the
Materials and Methods

cell membrane, the suspension was repeatedly frozen (three times) in liquid nitrogen and thawed at 37 °C. To sediment the nuclei, suspensions were centrifuged at 4 °C, 16000 x g for 10 min. Pellets were resuspended in nuclear extraction buffer containing 5 % glycerol and were subsequently disrupted by sonication (three times 10 pulses at duty cycle 40 % and output control 4). Nuclear extract was separated from debris by centrifugation (4 °C, 16000 x g for 10 min) and stored at -80 °C until use.

3.2.3.1.3 Protein concentration determination

The protein concentration in extracts was measured by the Bradford method, which is based on an adsorption shift of free Coomassie Brilliant Blue to protein bound Coomassie Brilliant Blue (Bradford, 1976). A calibration curve of BSA (1 mg/ml in ddH₂O) was pipetted into a 96 well plate ranging from 0-6 µg BSA per well. Likewise, 10 µl of pre-diluted protein samples (1:5 in ddH₂O) were loaded on the plate and stained with 200 µl of Bradford reagent (8.5 % phosphoric acid, 4.75 % ethanol, 1 % Coomassie Brilliant Blue G250). Samples and calibration were performed in technical triplicates. After 10 min of incubation in the dark, adsorption was measured at 600 nm.

3.2.3.1.4 Protein extraction for phosphorylated and large proteins

For the analysis of large (> 200 kDa) or phosphorylated proteins, the cell monolayer was washed with PBS in the culture dish and the PBS was completely removed. Cells were lysed directly on the plate by addition of sodium dodecyl sulfate (SDS) sample loading buffer (62.5 mM TRIS HCl pH 6.8, 10 % glycerine, 5 % β-mercaptoethanol, 2 % SDS and 0.01 % bromophenol blue) with agitation and using a cell scraper. Lysates were transferred to microfuge tubes, sonicated (three times 10 pulses at duty cycle 40 % and output control 4) and stored at -80 °C until use.

3.2.3.1.5 Semi-quantitative measurement of protein concentration

Relative protein amounts of extracts obtained by direct lysis of cells in SDS-loading buffer (3.2.3.1.4) were determined by densitometry analysis of loading controls (β-Actin or ERK2) as measured after SDS polyacrylamide gel electrophoresis (SDS-PAGE), western blotting and detection (3.2.3.2 and 3.2.3.3). After quantification of loading controls by densitometry, the volume loaded onto gels was adjusted to obtain equal relative protein amounts. The absence of regulation of the loading control proteins by the treatment was verified by blots performed with Bradford-quantified protein extracts.

3.2.3.2 Sodium dodecyl sulfate polyacrylamide gel electrophoresis

SDS-PAGE allows separation of proteins by their size. SDS sample buffer was added to each sample (unless SDS sample buffer was used for cell lysis as described in section 1.2.3.1.4), denatured at 95 °C (for 3 min) or at 56 °C (for 5 min) for proteins >200 kDa. Depending on protein abundance, an amount of 30-80 µg of protein was loaded onto gels for electrophoresis. Proteins
were firstly concentrated in the stacking gel (126 mM TRIS HCl pH 6.8, 4% Acrylamide/Bisacrylamide, 0.1% SDS, 0.1% ammonium persulfate, 0.1% TEMED) and then electrophoretically separated in the separating gel (375 mM TRIS HCl pH 8.8, 5-15% Acrylamide/Bisacrylamide, 0.1% SDS, 0.05% ammonium persulfate, 0.05% TEMED). Electrophoresis was performed between 90 and 120 V in running buffer (50 µM TRIS, 384 mM glycine, 0.1% SDS). Protein ladders (protein-marker IV, peqlab, Erlangen, Germany or Spectra™ Multicolor High Range Protein Ladder, ThermoFisherScientific, Waltham, MA, USA) were used in parallel to protein samples to allow size comparison after blotting.

3.2.3.3 Immunoblotting

Transfer of SDS-PAGE separated proteins onto a nitrocellulose membrane (Protran, Amersham, GE Healthcare, Dassel, Germany) occurred in blotting buffer (50 µM TRIS, 384 mM glycine, 20% methanol) at a current of 80-300 mA for 3-18 h at 4 °C. Transfer was verified by ponceau staining (0.1% Ponceau, 5% acetic acid) for 2 min, which was removed by rinsing the membrane in ddH$_2$O. Following ponceau removal, non-specific antibody binding to the membrane was blocked by incubation of the membrane in 5% BSA or 5% fat milk free in TRIS-buffered saline with Tween (TBS-T) (20 mM TRIS HCl pH 7.6, 150 mM NaCl, 0.1% Tween-20) for 60 min. Primary antibodies (3.2.3.4) were diluted in 5% BSA or fat free milk in TBS-T and incubated with the membrane overnight at 4 °C. Unbound residual antibody was washed away by rinsing the membrane in TBS-T (three times for 5 min at RT). The appropriate secondary antibody (3.2.3.4) coupled to an infrared dye was diluted 1:10000 in TBS-T and incubated with the membrane for 3-5 h at RT in the dark. After binding of the secondary antibody to the primary antibody, the membrane was washed (three times for 5 min at RT) and the signal generated by the infrared dye coupled secondary antibody was detected with the LI-COR® Odyssee system that measures fluorescence. Relative protein levels were determined by densitometry analysis using ImageJ.

3.2.3.4 Antibodies

<table>
<thead>
<tr>
<th>Antigen</th>
<th>Host</th>
<th>Dilution</th>
<th>Supplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetylated histone 3</td>
<td>Rabbit</td>
<td>1:1000</td>
<td>Merck Millipore, Billerica, MA, USA</td>
</tr>
<tr>
<td>Acetylated histone 4</td>
<td>Rabbit</td>
<td>1:2000</td>
<td>Merck Millipore, Billerica, MA, USA</td>
</tr>
<tr>
<td>ATR</td>
<td>Rabbit</td>
<td>1:1000</td>
<td>Cell signaling technology, Danvers, MA, USA</td>
</tr>
<tr>
<td>BAX</td>
<td>Mouse</td>
<td>1:500</td>
<td>Santa Cruz Biotechnology, Dallas, TX, USA</td>
</tr>
<tr>
<td>BCL-2</td>
<td>Mouse</td>
<td>1:1000</td>
<td>BD Pharmingen, Franklin Lakes, NJ, USA</td>
</tr>
<tr>
<td>CHK1</td>
<td>Mouse</td>
<td>1:1000</td>
<td>Cell signaling technology, Danvers, MA, USA</td>
</tr>
<tr>
<td>CHK2</td>
<td>Mouse</td>
<td>1:1000</td>
<td>Cell signaling technology, Danvers, MA, USA</td>
</tr>
<tr>
<td>ERK2</td>
<td>Mouse</td>
<td>1:1000</td>
<td>Santa Cruz Biotechnology, Dallas, TX, USA</td>
</tr>
<tr>
<td>FANCD2</td>
<td>Mouse</td>
<td>1:200</td>
<td>Santa Cruz Biotechnology, Dallas, TX, USA</td>
</tr>
<tr>
<td>Antibody</td>
<td>Species</td>
<td>Dilution</td>
<td>Source</td>
</tr>
<tr>
<td>-----------</td>
<td>---------</td>
<td>----------</td>
<td>---</td>
</tr>
<tr>
<td>HDAC1</td>
<td>Mouse</td>
<td>1:1000</td>
<td>Cell signaling technology, Danvers, MA, USA</td>
</tr>
<tr>
<td>HDAC2</td>
<td>Mouse</td>
<td>1:1000</td>
<td>Cell signaling technology, Danvers, MA, USA</td>
</tr>
<tr>
<td>HDAC3</td>
<td>Mouse</td>
<td>1:1000</td>
<td>Cell signaling technology, Danvers, MA, USA</td>
</tr>
<tr>
<td>HDAC8</td>
<td>Rabbit</td>
<td>1:1000</td>
<td>Santa Cruz Biotechnology, Dallas, TX, USA</td>
</tr>
<tr>
<td>HSP90</td>
<td>Mouse</td>
<td>1:1000</td>
<td>Santa Cruz Biotechnology, Dallas, TX, USA</td>
</tr>
<tr>
<td>KU80</td>
<td>Mouse</td>
<td>1:1000</td>
<td>GeneTex, Irvine, CA, USA</td>
</tr>
<tr>
<td>NOXA</td>
<td>Mouse</td>
<td>1:1000</td>
<td>Calbiochem/Merck Millipore, Billerica, MA, USA</td>
</tr>
<tr>
<td>p21^{Cip1/Waf1}</td>
<td>Mouse</td>
<td>1:1000</td>
<td>Cell signaling technology, Danvers, MA, USA</td>
</tr>
<tr>
<td>p53</td>
<td>Rabbit</td>
<td>1:1000</td>
<td>Santa Cruz Biotechnology, Dallas, TX, USA</td>
</tr>
<tr>
<td>pATM^{Ser1981}</td>
<td>Rabbit</td>
<td>1:1000</td>
<td>Cell signaling technology, Danvers, MA, USA</td>
</tr>
<tr>
<td>pATR^{Ser428}</td>
<td>Rabbit</td>
<td>1:1000</td>
<td>Cell signaling technology, Danvers, MA, USA</td>
</tr>
<tr>
<td>pCHK1^{Ser345}</td>
<td>Rabbit</td>
<td>1:1000</td>
<td>Cell signaling technology, Danvers, MA, USA</td>
</tr>
<tr>
<td>pCHK2^{Thr68}</td>
<td>Rabbit</td>
<td>1:1000</td>
<td>Cell signaling technology, Danvers, MA, USA</td>
</tr>
<tr>
<td>PCNA</td>
<td>Mouse</td>
<td>1:300</td>
<td>Calbiochem/Merck Millipore, Billerica, MA, USA</td>
</tr>
<tr>
<td>RAD51</td>
<td>Rabbit</td>
<td>1:5000</td>
<td>abcam, Cambridge, UK</td>
</tr>
<tr>
<td>RAD51D</td>
<td>Mouse</td>
<td>1:1000</td>
<td>Merck Millipore, Billerica, MA, USA</td>
</tr>
<tr>
<td>RPA p34</td>
<td>Mouse</td>
<td>1:1000</td>
<td>ThermoFisherScientific, Waltham, MA, USA</td>
</tr>
<tr>
<td>Talin-1</td>
<td>Rabbit</td>
<td>1:1000</td>
<td>Cell signaling technology, Danvers, MA, USA</td>
</tr>
<tr>
<td>β-Actin</td>
<td>Mouse</td>
<td>1:2000</td>
<td>Santa Cruz Biotechnology, Dallas, TX, USA</td>
</tr>
<tr>
<td>γH2AX</td>
<td>Rabbit</td>
<td>1:1000</td>
<td>Cell signaling technology, Danvers, MA, USA</td>
</tr>
</tbody>
</table>

Secondary antibodies

<table>
<thead>
<tr>
<th>Secondary antibody</th>
<th>Donkey</th>
<th>1:10000</th>
<th>LI-COR, Lincoln, NE, USA</th>
</tr>
</thead>
<tbody>
<tr>
<td>IRDye anti mouse IgG 800CW</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IRDye anti rabbit IgG 800CW</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IRDye anti mouse IgG 680RD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IRDye anti rabbit IgG 680RD</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.2.3.5 Immunohistofluorescence

Paraffin-embedded melanoma samples from untreated patients were obtained from Dr. C. Loquai (Dermatology, University Medicine Mainz). Microtome sections were deparaffinized by Xylene extraction (three times 5 min at RT) and rehydrolized by incubation in solutions with decreasing ethanol dilutions (100 % three times for 3 min at RT, 95 %, 80 % both two times for 3 min at RT) and finally in ddH₂O for 5 min at RT. For antigen retrieval, sections were incubated in citrate buffer (10 mM sodium citrate pH 6) at 95 °C for 25 min, cooled down to RT and rinsed with TBS-T. Non-specific binding sites were blocked by incubating the sections in serum free protein block.
(DAKO, Carpinteria, CA, USA) for 30 min at RT. Primary antibodies were diluted in TBS-T (HDAC1 1:6400, HDAC2 1:400), added onto the section and allowed to bind overnight at 4 °C in a humidified atmosphere. After washing away the first antibody with TBS-T (three times for 5 min), the secondary Alexa Fluor® 488-coupled anti-mouse antibody (LifeTechnologies, Carlsbad, CA, USA), diluted 1:1000 in TBS-T, was incubated on the section for 1 h at RT. The antibody was removed by washing with TBS-T (three times for 5 min) and the section was stained with nuclear stain TO-PRO®-3 (1 µM in TBS-T for 15 min, ThermoFisherScientific, Waltham, MA, USA). TO-PRO®-3 was rinsed away with TBS-T and the section was mounted in Vectashield (Vector Laboratories, Burlingame, CA, USA). Images were acquired using a laser scanning microscope together with the Zen software.

3.2.3.6 Immunofluorescence

For detection of γH2AX foci, cells were seeded on pretreated coverslips (10 min in diethylether, 5 min in 100 % ethanol, 5 min in 70 % ethanol, 5 min in dH2O, 30 min in 1 M HCl and storage in 70 % ethanol). After treatment and incubation time, cells on coverslips were rinsed in PBS and fixed for 15 min in 3.7 % formaldehyde in PBS. Coverslips were washed with PBS (three times for 5 min) and then submerged in ice-cold 100 % methanol in which the samples were stored until staining (maximum 5 days). Cells on coverslips were washed with PBS (three times for 5 min) before non-specific binding was blocked with BSA (5 % in PBS/0.3 % Triton-X-100) for 1 h at RT. The γH2AX antibody (murine host, Merck Millipore, Billerica, MA, USA) was diluted 1:1000 in PBS/0.3 % Triton-X-100 and added to the coverslips. After incubation overnight at 4 °C, the primary antibody was removed by washing the coverslips with PBS (three times 5 min). The secondary anti mouse Alexa Fluor® 488 coupled antibody (1:1000 in PBS/0.3 % Triton-X-100, LifeTechnologies, Carlsbad, CA, USA) was added to the coverslips and the coverslips were incubated for 1 h at RT. Upon removal of secondary antibody by washing in PBS (three times for 5 min), nuclei were stained with TO-PRO®-3 in PBS/0.3 % Triton-X-100 for 15 min, rinsed, and coverslips were mounted in Vectashield (Vector Laboratories, Burlingame, CA, USA). Images were acquired with laser scanning microscope. Foci per cell were counted using the Cell A software.

3.2.3.7 MGMT activity assay

The in vitro measurement of MGMT activity in protein extracts (3.2.3.1.1) is based on the transfer of 3H-labeled methyl groups from 3H-MNU treated calf thymus DNA onto MGMT. Therefore the 3H-DNA (10 µl, 80000 counts per minute) was incubated with 200 µg of total protein in reaction buffer (HEPES-KOH pH 7.8, 1 mM DTT, 5 mM EDTA) for 90 min at 37 °C. Transfer reactions were stopped by addition of trichloroacetic acid (13 %) and 200 µg BSA and DNA was heat-denatured (95 °C for 45 min). After precipitation of the protein (10 min, 14 000 4 °C), the sediment was washed three times with 5 % trichloroacetic acid and resuspended in 200 mM NaOH.
Materials and Methods

Using a liquid scintillation counter, remaining radioactivity was measured and was expressed as fmol (transferred radioactivity from 3H-DNA) per mg of total protein (fmol/mg protein).

3.2.4 Gene expression

3.2.4.1 Real time polymerase chain reaction

Real time polymerase chain reaction (real-time PCR) enables the measurement of gene specific mRNA expression. Therefore, RNA was extracted from cell pellets stored at -80 °C using a silica column kit (NucleoSpin® RNA, Macherey-Nagel, Düren) according to the manufacturer’s instructions. The RNA was eluted with RNase-free water and the concentration and purity was measured spectrophotometrically using absorbance at 260 nm for RNA concentration and its ratio to 280 nm and 230 nm to note contamination with proteins, EDTA and carbohydrates. One microgram of RNA was subjected to reverse transcription using Verso cDNA kit (ThermoFisherScientific, Waltham, MA, USA) with anchored oligo dT primers. The resulting cDNA in 20 µl was diluted to 50 µl and 4 µl of this dilution were used in the 16 µl PCR reaction (total cDNA dilution 1:6). Primers (forward and reverse, see 3.2.4.1.1) were added at a final concentration of 250 nM each. Primers for the housekeeping genes ($ERCC6$ and $VIPAS39$), obtained from primerdesign (Southampton, UK) were tested for non-regulation following experiment specific treatment. For amplification and measurement a mastermix (SensiMix SYBR® & Fluorescein Kit, Bioline, London, UK) containing a hot start DNA polymerase, dNTPs, MgCl$_2$ (final concentration 4 mM) and the SYBR® green fluorophore was used. Conditions for the PCR were 50 °C for 2 min, polymerase activation at 95 °C for 10 min, amplification cycles of 10 s at 95 °C denaturation, 20 s at 56 °C for annealing and elongation for 20 s at 72 °C. SYBR® green fluorescence was acquired after each cycle. After 45 cycles a melt curve analysis of the products was performed at temperatures ranging from 65 to 95 °C. Relative cDNA levels were analyzed using Bio-Rad CFX manager software.

3.2.4.1.1 Primer sequences

<table>
<thead>
<tr>
<th>Gene</th>
<th>Orientation</th>
<th>Sequence</th>
<th>Supplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAD51</td>
<td>forward</td>
<td>ACGGTTAGAGCAGTGTGGC</td>
<td>Primers were obtained from Life Technologies, Carlsbad, CA, USA</td>
</tr>
<tr>
<td></td>
<td>reverse</td>
<td>TGATCTCTGACCAGCCTTTGG</td>
<td></td>
</tr>
<tr>
<td>FANCD2</td>
<td>forward</td>
<td>CCTGGCCGGGAAAGTCCGAAA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>reverse</td>
<td>GGTGTGCTTCTCTGGTTTTGGAG</td>
<td></td>
</tr>
<tr>
<td>ATR</td>
<td>forward</td>
<td>ATGCAAACCTCTCAAGCTCGG</td>
<td></td>
</tr>
<tr>
<td></td>
<td>reverse</td>
<td>TGAATCTTCTACTCCAGTCACAAA</td>
<td></td>
</tr>
</tbody>
</table>
3.2.4.1.2 PCR array

The PCR array comprised about 180 gene specific primers, for the detection of genes implicated in cell cycle regulation, DNA repair and cell death as well as ACTB and GAPDH used as housekeeping genes, at a concentration of 625 nM on PCR plates. A mixture of cDNA (2 µg RNA input for synthesis, final dilution of cDNA 1:20), MgCl₂ (4 mM) and the master mix (see. 3.2.4.1) was added to the primers (final concentration 250 nM) and amplification occurred according to a slightly modified version of the previously described PCR protocol (see section 3.2.4.1). Here the annealing temperature was 55 °C.

3.2.5 Xenograft experiment

Animal experiment was conducted in accordance with the act for the protection of animals (Tierschutzgesetz) by FELASA-trained, Dr. K.-H. Tomaszowski, until mice were humanly sacrificed. Nude immune deficient male BALB/c nu/nu mice were obtained from Charles River (Wilmington, MA, USA) and housed in a pathogen free environment at 26 °C, a 12 h day/night cycle and watered and fed ad libitum.

For the induction of xenograft tumors, 6 x 10⁶ Mel537 cells in PBS were subcutaneously injected into each flank (left and right) of the mouse. Mice were randomly grouped (six groups of three animals) and when tumor size [(W*H*L*π)/6] reached on average 100 mm³ treatment was started. Animal groups received PBS only (control group) or VPA at doses of 200/275/350/425 or 500 mg/kg bwt (bodyweight – bwt) twice daily (in the mornings and nights, 10 h difference) for five days. The drug was injected intraperitoneally. Bodyweight and tumor size was monitored over the course of the experiment. The experiment was terminated 2 h after the last treatment by cervical dislocation and subsequent surgical harvesting of the tumor material, which was snap-frozen in liquid nitrogen and stored at -80 °C until protein extraction.

3.2.6 Statistics

Unless otherwise stated, data points show the means of at least three independent experiments and their standard deviation as error bars. For comparison of two groups the two-tailed unpaired t-test was used and the calculated p-values are displayed: p-value<0.05*, p-value<0.005**, p-value<0.001***. For statistical analysis and graph plotting PRISM software was used.
4 Results

4.1 Effect of histone deacetylase inhibition on the sensitivity of melanoma cells to genotoxic stress

Patients suffering from metastatic melanoma face low response rates as the cancer rapidly develops resistance to B-RAF inhibitors (in B-RAF mt tumors), immunotherapy and to irradiation or alkylating agent-based genotoxic therapies. This results in a low 5-year survival rate ranging between 10-25% (Balch et al., 2009). As HDAC inhibitors have proven antiproliferative and radiosensitizing in prostate cancer (Chen et al., 2007b), lung cancer cells (Geng et al., 2006) and other cancers (Blattmann et al., 2010; Banuelos et al., 2007), their impact on melanoma sensitivity towards routinely used alkylating agents was investigated.

4.1.1 Histone deacetylase expression in melanoma

The use of HDAC inhibitors in cancer therapy is based upon the correlation of HDAC overexpression with dismal prognoses, which has been shown for class I HDACs in solid tumors like colon and prostate cancer (Huang et al., 2005; Wilson et al., 2006; Halkidou et al., 2004; Weichert et al., 2008b). Expression levels of these HDACs, namely HDAC1, HDAC2, HDAC3 and HDAC8, in melanoma are incomplete and therefore required analysis.

Class I HDAC expression levels were assessed in six melanoma cell lines (A375, A2058, D05, G361, Mel537 and SK-Mel187) and compared to three non-cancerous cell samples (peripheral blood mononuclear cells-PBMCs, immortalized fibroblasts-VH10tert and primary melanocytes) by immunoblotting. HDAC1, HDAC2, HDAC3 and HDAC8 were expressed in all of the analyzed samples. HDAC expression in PBMCs was only detectable at higher intensity settings and therefore not included for further analysis. Though, differing between the cell lines, HDAC1, HDAC2 and HDAC3 protein levels were 2.5-3 fold higher in melanoma cells as compared to non-cancerous cells. In contrast, protein levels of HDAC8 were similar in cancer and non-cancerous cells (Figure 9 a and b). Further, HDAC1 and HDAC2 expression was verified in a melanoma sample by immunohistofluorescence. Both HDACs were positively stained and staining was limited to the nucleus as indicated by nuclear stain TO-PRO®-3 (Figure 9 c).
Figure 9 – Class I HDAC expression in melanoma cells.
Whole-cell protein extracts of melanoma cell lines (D05, G361, SK-Mel-187, Mel537, A2058 and A375) and non-cancerous cells (PBMCs, VH10tert and Melanocytes) that have been subjected to immunoblotting (a). HDAC-levels were quantified and normalized to β-actin and means of relative protein levels for melanoma cell lines and non-cancerous cells are displayed (b). Immunohistofluorescence staining of melanoma samples. HDACs are shown in green while nuclear stain (TO-PRO®) is shown in red (c).

Results
4.1.2 Effect of HDAC inhibitors on melanoma cells

Having shown that HDAC1, HDAC2 and HDAC3 are upregulated in melanomas, their inhibition might be a reasonable approach for a possible adjuvant therapy. The short chain fatty acid VPA is an HDAC inhibitor that has been used for the therapy of epilepsy for more than fifty years and is well characterized in terms of adverse side effects and tolerance. VPA acts at a millimolar range and inhibits HDAC1, HDAC2, HDAC3 and HDAC8 (Phiel et al., 2001; Göttlicher et al., 2001; Bradner et al., 2010). First, its functionality in melanoma cells was tested by analyzing histone acetylation. The six melanoma cell lines tested, show heterogenous basal acetylation of histone 3 (H3ac) and histone 4 (H4ac), but in all of them a 168 h treatment with VPA increased H3ac and H4ac levels, verifying the function of VPA as an HDAC inhibitor in these melanoma cells (Figure 10 a). In addition, VPA decreased the protein levels of HDAC1, HDAC2 and HDAC3 in all cell lines except for A2058 (S 1). MS-275 was selected as a second HDAC inhibitor due to its selectivity to HDAC1, HDAC2 and HDAC3 (Bradner 2010), as these showed the highest expression compared to non-cancerous cells in the melanoma cell lines used. Treatment of melanoma cell lines (D05, A375) with MS-275 dose-dependently increased H3ac, showing the susceptibility of melanoma cell lines to this HDAC inhibitor (Figure 10 b).

![Histone acetylation in melanoma cells upon HDAC inhibition.](image)

Melanoma cell lines were treated with VPA (168 h, 1 mM) (a) or with MS-275 (0-1 µM, 72 h) (b) and whole cell protein extracts were subjected to immunoblotting.

HDAC inhibitors have not only been reported to act in combination with radiation, but also to induce cell death in melanoma and lung cancer cells when applied alone (Facchetti et al., 2004; Zhang et al., 2004; Brazelle et al., 2010). Therefore, the question of toxicity of VPA in melanoma cells was addressed by measuring cell death induction by propodium iodide (PI) staining and analysis of the Sub-G1 population. D05 and A375 melanoma cells were treated with VPA and monitored over the period of treatment (168 h). In D05 cells, VPA induced a Sub-G1 fraction of
about 7% after 168 h, which did not differ significantly from the basal Sub-G1 fraction in cells without treatment. In contrast, VPA had no effect on the Sub-G1 fraction in A375 cells for the period of treatment (Figure 11).

Figure 11 – Toxicity of the HDAC inhibitor VPA on melanoma cell lines.
D05 and A375 melanoma cells were treated with VPA (1 mM), fixed after indicated timepoints and stained with PI for flow cytometry analysis of Sub-G1 population, which represents apoptotic cells.

HDAC inhibitors have been shown to arrest the progression of cells through the cell cycle (Noh and Lee, 2003; Cha et al., 2009; Roy et al., 2005; Sandor et al., 2000; Newbold et al., 2014). Therefore, cell cycle distribution and cell growth in response to VPA was analyzed. The cell cycle of D05 cells was insignificantly altered by a 168 h VPA treatment as the G1 population increased from 65% to 69%. A375 melanoma cell lines were not affected by a 168 h VPA treatment as measured by PI staining (Figure 12 a). Likewise, the proliferation of A375 cells was not impaired in VPA pretreated cells, while D05 cells were slightly delayed 24 h after drug removal, but resumed a growth rate similar to untreated cells after 48 h (Figure 12 b).
Results

Figure 12 - Effect of the HDAC inhibitor VPA on melanoma cell cycle and proliferation.
D05 (blue) and A375 (red) melanoma cells were treated with VPA (1 mM, 168 h) and cell cycle distribution was measured by PI-staining and flow cytometry analysis (a). D05 and A375 control and VPA-pretreated (1 mM, 168 h) cells were seeded at the same density, counted at indicated times and related to the pretreatment number of cells (0 h). Growth analysis was conducted by Dr. C. Barckhausen (b).

4.1.3 Influence of HDAC inhibitor pretreatment on the sensitivity of melanoma cells to genotoxic stress

We investigated the role of HDAC1, HDAC2 and HDAC3 in the resistance of melanoma to therapy by HDAC inhibition with VPA or MS-275. Therefore, we applied an HDAC inhibitor pretreatment schedule, which allowed separation of HDAC inhibitor effects from genotoxin effects. To this end, cells were exposed for either 168 h to VPA or 72 h to MS-275 before the HDAC inhibitor was removed and TMZ or FM were added, or before cells were irradiated.

Exposure of melanoma cell lines (D05 and A375) to TMZ, FM or IR alone, induced 5-20 % apoptosis with IR being the least effective, reflecting the radioresistant phenotype of melanoma cells (Figure 13 b). Interestingly, the apoptotic response to TMZ and IR of primary melanocytes (<5 %) was lower than the response of melanoma cell lines, whereas primary melanocytes and melanoma cells respond similar to FM. Pretreatment of the two melanoma cell lines with VPA significantly increased the induction of apoptosis following TMZ, FM and IR exposure. For the alkylating agents TMZ and FM, VPA pretreatment was capable of doubling the cytotoxic effectiveness compared to the drug alone. VPA pretreatment in D05 melanoma cells likewise resulted in a doubling of IR-induced apoptosis, whereas in A375 melanoma cells VPA only slightly increased IR-induced apoptosis. Strikingly, VPA did not sensitize primary melanocytes. In fact, it decreased their sensitivity to TMZ and FM, while having no effect on the IR response.
Results

Figure 13 - Effect of HDAC inhibitor pretreatment on the sensitivity of melanoma cells to alkylating agents and ionizing radiation.

Melanoma cells (D05, A375) and primary melanocytes were pretreated with an HDAC inhibitor, which was removed before treatment with TMZ (50 µM, 120 h), FM (32 µM, 120 h) or irradiation (5 Gy, 72 h). In TMZ- or FM-treated samples, MGMT was depleted by addition of O6BG (10 µM) 1 h before treatment. Apoptosis was detected by AnnexinV-FITC/PI-staining and flow cytometry analysis (FITC-positive, PI-negative population). Representative dot plots of AnnexinV-FITC/PI staining in control and VPA pretreated (1 mM, 168 h) D05 cells with and without TMZ treatment (a). Effect of VPA pretreatment (1 mM, 168 h) on apoptosis induction upon various genotoxic stressors. (b) Effect of MS-275 pretreatment (1 µM, 72 h) on TMZ-induced apoptosis (c).

Similar to VPA, pretreatment with MS-275 increased the sensitivity of melanoma cell lines to TMZ as demonstrated by an approximately threefold higher induction of apoptosis (Figure 13 c).

To examine how general the sensitizing effect of HDAC inhibitors is on melanoma cells, four additional cell lines were selected according to their p53 and B-RAF status, as both determine
therapy response. Whereas p53 confers resistance by mediating DNA repair (Barckhausen et al., 2014; Naumann et al., 2009), mutant B-RAF is linked to a lower response to chemotherapy, although the mechanism has not been identified yet. Though, differential cell death induction was excluded in in vitro studies (Long et al., 2011; Roos et al., 2014). In addition to A375 (BRAF^{V600E}, TP53 wt) that was included as control, since sensitization has been shown on the level of apoptosis induction, A2058 (BRAF^{V600E}, TP53 mt), G361 (BRAF^{V600E}, TP53 wt), SK-Mel187 (TP53 mt, BRAF wt) and Mel537 (BRAF wt, TP53 wt) were chosen. For these cell lines the effect of VPA pretreatment on TMZ sensitivity was examined using the colony formation assay. In line with the increased amount of apoptosis induced by TMZ after VPA pretreatment in D05 and A375 cells, fewer colonies formed in this broader panel of cell lines using the combination of VPA pretreatment and TMZ as compared to TMZ alone (Figure 14). Remarkably, sensitization was largely independent of p53 and B-RAF status.

Figure 14 - Clonogenic survival of VPA pretreated and untreated melanoma cells upon TMZ. Melanoma cell lines (A375, A2058, G361, SK-Mel187 and Mel537) were pretreated with the HDAC inhibitor VPA (1 mM, 168 h). VPA was removed and cells were reseeded for colony formation assay. MGMT was depleted by O⁶BG (10 µM, 1 h) before TMZ treatment.
4.1.3.1 Characteristics of HDAC inhibitor-mediated sensitization

Having shown that HDAC inhibition increased the cytotoxic effect of DNA damaging therapy approaches in a panel of melanoma cell lines while not impacting on primary melanocytes, two questions regarding the clinical relevance emerged: At which (clinically) relevant doses for genotoxin and HDAC inhibitor do both interact synergistically? Is it possible to reduce systemically applied drugs to spare effect on healthy tissue while still having an effect on tumor cells? To answer the former question, D05 melanoma cells were pretreated with VPA and exposed to increasing doses of TMZ or IR before measuring the apoptotic response by AnnexinV-FITC/PI-staining. At the highest concentration tested (100 µM), TMZ alone induced approximately 10 % of apoptosis, whereas in combination with VPA pretreatment a four-fold decrease in TMZ concentration (25 µM) resulted in 15 % apoptosis. With increasing TMZ doses apoptosis induction further increased up to 25 % (Figure 15 a). Using IR in combination with VPA pretreatment showed similar effects: irradiating D05 cells with 7 Gy increased the apoptotic fraction by approximately 5 % over basal level compared to an increase by 18% apoptosis induction following VPA pretreatment. In VPA pretreated cells, the effect of IR alone was surpassed at a dose of only 2 Gy (Figure 15 b).

Evaluation of HDAC inhibitor doses that enhance the TMZ response of D05 cells revealed that for VPA and MS-275 pretreatment with low doses of 0.25 mM and 0.25 µM, respectively, were sufficient to slightly sensitize D05 cells to TMZ (3-5 % apoptosis induction over TMZ alone) (Figure 15 c and d). Furthermore, a steady increase in sensitization was observed for both inhibitors with increasing pretreatment concentrations. Comparison of VPA and MS-275 showed a higher sensitizing effect for MS-275, although, at the highest concentration of 1 µM used for MS-275, it was also more toxic when applied alone.

Furthermore, the impact of pretreatment duration was investigated to determine whether longer HDAC inhibitor pretreatments are actually necessary for sensitization. Thus, D05 cells were pretreated for increasing times with VPA and treated with TMZ for 120 h. Apoptosis was measured by AnnexinV-FITC/PI-staining. The experimental results demonstrated that already a 48 h VPA pretreatment was sufficient to act synergistically on TMZ induced apoptosis in melanoma cells (Figure 15 e). Nevertheless, the highest increase in sensitivity to TMZ was observed following 168 h pretreatment time, demonstrating the benefit of prolonged pretreatment. In addition, apoptosis execution after TMZ addition in VPA pretreated and control cells showed that both start to die 72 h after TMZ addition. However, sensitization was most pronounced 120 h after TMZ treatment (Figure 15 f).
Results

Figure 15 - Apoptosis induction upon genotoxic stress in HDAC-inhibitor pretreated and untreated D05 melanoma cells.

Apoptosis was measured by AnnexinV-FITC/PI-staining (a-e) or PI-staining for quantification of the Sub-G1 population (f) and flow cytometry analysis. In TMZ-treated samples MGMT was depleted by O6BG (10 µM) 1 h before TMZ-treatment. Dose-response of TMZ (120 h) (a) or IR (72 h) (b) in control and VPA pretreated (1 mM, 168 h) cells. Dose-response of pretreatment with VPA (168 h) (c) or MS-275 (72 h) (d) in TMZ-induced apoptosis 120 h after TMZ addition (50 µM). Kinetics of VPA pretreatment (1 mM) in TMZ-induced apoptosis (50 µM, 120 h) (e). Kinetics of TMZ-induced apoptosis (50 µM, 120 h) in control and VPA pretreated cells (f).
4.1.3.2 Role of O^6-methylguanine-DNA methyltransferase in HDAC inhibitor-mediated sensitization of melanoma cells to TMZ

The previous characterization of the kinetics underlying sensitization of melanoma cells to alkylating agents by HDAC inhibitors revealed that D05 cells require 72 h incubation with TMZ before they initiate apoptosis, irrespective of VPA pretreatment. This indicates a possible role of the clinically relevant TMZ-induced lesion O^6MeG since the model of its cytotoxic action requires two cell cycles before induction of cell death (Quiros et al., 2010). Therefore, the impact of VPA on the repair protein MGMT was analyzed. MGMT is responsible for removal of the methyl group from O^6MeG which occurs in a suicidal manner by transfer of the methyl-group onto an internal cysteine followed by proteasomal degradation of MGMT (Srivenugopal et al., 1996; Lindahl et al., 1982). We measured MGMT activity in response to VPA pretreatment in an attempt to elucidate whether sensitivity is also conferred in MGMT-proficient cells. We found that VPA pretreatment decreased MGMT activity in D05 and A375 melanoma cells (Figure 16 a). Whereas D05 display a low basal activity (150 fmol/mg) and a non-significant VPA-mediated activity reduction (120 fmol/mg), A375 cells with a higher basal MGMT activity (370 fmol/mg) responded to VPA with a significant decrease in MGMT activity (290 fmol/mg).

The question whether the VPA-mediated MGMT reduction was sufficient to overcome resistance to O^6MeG, was addressed by manipulation of MGMT with its artificial substrate O^6-benzylguanine (O^6BG). It inactivates MGMT, causes MGMT degradation, consequently leading to the persistence of O^6MeG. Allowing MGMT proficient D05 and A375 to repair O^6MeG (no O^6BG) completely abolished TMZ induced apoptosis in both: VPA pretreated cells and untreated control cells. Whereas the addition of O^6BG, and therefore the persistence of O^6MeG, restored the sensitization phenotype. Under these conditions TMZ induced low amounts of apoptosis while following VPA pretreatment TMZ induced twice as much apoptosis (Figure 16 b). Though, reduction of MGMT activity by VPA pretreatment was not sufficient to confer sensitivity to O^6MeG, since apoptosis induction upon TMZ was detected only in the presence of O^6BG, irrespective of pretreatment. In the presence of O^6BG, VPA pretreatment doubled the response to TMZ, indicating a sensitization effect specific to the O^6MeG lesion.
MGMT activity was analyzed in VPA pretreated (1 mM, 168 h) and untreated D05 and A375 melanoma cells by measuring the transfer of a 3H-labelled methyl group from calf-thymus DNA onto MGMT in corresponding cell extracts (a). VPA pretreated (1 mM, 168 h) and control D05 and A375 melanoma cells were either left MGMT proficient or MGMT was depleted by addition of O^6BG (10 µM) 1 h before TMZ treatment. Apoptosis was measured 120 h after TMZ exposure (50 µM) by AnnexinV-FITC/PI-staining and flow cytometry analysis (b).

4.1.4 HDAC inhibitor regulated genes and proteins that determine TMZ sensitivity

As demonstrated, HDAC inhibitors increase the apoptotic response of melanoma cells to TMZ-induced O^6MeG. Having excluded effects of HDAC inhibitors on MGMT, the mechanistic reasons for the HDAC inhibitor-mediated sensitization effect needed to be elucidated. Sensitivity of melanoma cells to TMZ is defined by their capability of undergoing apoptosis and by their DNA repair capacity, specifically by mismatch repair (MMR) and HR processes (Fu et al., 2012; Roos and Kaina, 2013). As DNA damage signaling and checkpoint activation acts upstream of apoptosis and DNA repair, it likewise determines TMZ-sensitivity. The most abundant proteins affected by HDAC inhibition are histones, which become hyperacetylated resulting in an open chromatin structure and, therefore, have direct effects on transcription and gene expression. Based on this, the impact of HDAC inhibition on the expression of genes involved in apoptosis, DNA repair and DNA damage signaling was analyzed by using a PCR array of 180 genes involved in these processes.

VPA altered the gene expression profile in D05 cells compared to untreated cells by downregulating and upregulating a number of genes (complete list see S 5). Amongst the
upregulated genes, three that code for pro-apoptotic BCL-2-family members were found (BAX, NOXA, PUMA) (Table 2). In addition, the BCL2 gene encoding the corresponding anti-apoptotic protein was downregulated. The DNA repair genes RAD51, RAD51D, KU80 and FANCD2, as well as the damage signaling kinase ATR were all downregulated by VPA.

Table 2 – Regulation of DNA repair, apoptosis and cell cycle genes by the HDAC inhibitor VPA in D05 melanoma cells.

D05 melanoma cells were treated with VPA (1 mM, 168 h) and gene expression was measured by a qPCR-based array. Fold change in gene expression is shown relative to the untreated control. Selected gene expression data are shown, for the complete list see S 5.

<table>
<thead>
<tr>
<th>Gene</th>
<th>Fold change</th>
<th>Gene</th>
<th>Fold change</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMP3</td>
<td>0.17±0.06</td>
<td>IL6</td>
<td>2.07±0.50</td>
</tr>
<tr>
<td>TDG</td>
<td>0.30±0.34</td>
<td>CDKN1A</td>
<td>2.11±0.68</td>
</tr>
<tr>
<td>RAC1</td>
<td>0.35±0.34</td>
<td>GADD45A</td>
<td>2.37±0.07</td>
</tr>
<tr>
<td>RAD51</td>
<td>0.37±0.24</td>
<td>NOXA</td>
<td>2.59±0.26</td>
</tr>
<tr>
<td>ATR</td>
<td>0.54±0.41</td>
<td>PUMA</td>
<td>2.66±1.26</td>
</tr>
<tr>
<td>PARP2</td>
<td>0.57±0.26</td>
<td>BAX</td>
<td>2.95±2.05</td>
</tr>
<tr>
<td>FAN1</td>
<td>0.58±0.30</td>
<td>C-IAP1</td>
<td>3.11±0.75</td>
</tr>
<tr>
<td>RAD51D</td>
<td>0.58±0.15</td>
<td>GADD45G</td>
<td>3.45±1.21</td>
</tr>
<tr>
<td>KU80</td>
<td>0.62±0.12</td>
<td>CYP1A1</td>
<td>3.46±0.65</td>
</tr>
<tr>
<td>GADD45B</td>
<td>0.66±0.08</td>
<td>MMP13</td>
<td>7.30±3.21</td>
</tr>
<tr>
<td>BCL2</td>
<td>0.66±0.33</td>
<td>CCNA1</td>
<td>18.29±5.33</td>
</tr>
<tr>
<td>FANCD2</td>
<td>0.67±0.22</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

To validate the transcriptomics data, protein levels of the corresponding VPA-regulated genes were assessed by immunoblotting in untreated and VPA pretreated D05 and A375 cells. For the apoptosis proteins (BCL-2, BAX, PUMA, NOXA), no differential regulation was observed (Figure 17). Neither were differences upon VPA detected for the NHEJ-repair protein KU80 nor for RAD51D. However, the protein level of the key protein in HR processes, RAD51 (Baumann and West, 1998), was reduced to approximately half in VPA pretreated D05 and A375 cells. Likewise, FANCD2 was clearly downregulated at protein level upon VPA. A downregulating effect was also seen on ATR which was reduced by 20-30 % compared to the untreated control.
Results

Figure 17 - Regulation of DNA repair, apoptosis and cell cycle proteins by the HDAC inhibitor VPA in melanoma cells.

Whole-cell protein extracts of VPA pretreated (1 mM, 168 h) and untreated D05 and A375 melanoma cells were subjected to immunoblotting. Relative expression (r.e.) was calculated from quantification of protein and loading control (β-Actin or Talin).

4.1.4.1 Role of checkpoint signaling in HDAC inhibitor-mediated sensitization of melanoma cells to TMZ

After identifying the DNA repair proteins RAD51 and FANCD2, as well as the signaling kinase ATR as possible contributors of HDAC inhibitor-mediated sensitization, their role in sensitization was analyzed. Upon TMZ, activated ATR phosphorylates CHK1 (Cimprich and Cortez, 2008). Here, levels of phosphorylated CHK1 were quantified by western blot and used as readout of ATR activity. The basal level of CHK1 phosphorylation was low and did not differ between controls and pretreated cells (Figure 18). TMZ-treatment led to an increase in the activating phosphorylation of CHK1 reaching its maximum after 24 h (A375) or 48 h (D05), irrespective of pretreatment. Although less certain, CHK2 is also phosphorylated by ATR (Wang et al., 2006; Pabla et al., 2008). Therefore, CHK2 phosphorylation was analyzed but no differences in activation were observed upon TMZ between control and VPA pretreated cells (S 2). This indicates that VPA-mediated downregulation of ATR leaves sufficient protein for effective damage signaling. Therefore, it may not contribute to the sensitizing effect of HDAC inhibitors.
Results

VPA pretreated (1 mM, 168 h) and untreated D05 and A375 melanoma cells were exposed to TMZ (50 µM). MGMT was depleted by O\textsubscript{6}BG 1 h before TMZ addition. At indicated times after TMZ treatment, whole cells protein extracts were subjected to immunoblotting using phospho-specific and total CHK1 antibodies.

4.1.4.2 Role of DNA repair in HDAC inhibitor-mediated sensitization of melanoma cells to TMZ

We have excluded that neither impaired checkpoint signaling nor deregulation of apoptosis-driving BCL-2 proteins are responsible for the observed HDAC inhibitor mediated sensitization. The role of the DNA repair proteins RAD51 and FANCD2 was therefore examined. RAD51 downregulation confers sensitivity to TMZ in glioma and CHO cells (Roos et al., 2009; Quiros et al., 2011), which is explained by the role of RAD51 during HR-mediated replication fork stabilization/initiation or DSB repair. The role of FANCD2 in the cytotoxicity of TMZ has also been shown, but the reasons are still unclear, ranging from a role in replication fork stabilization to a role in signaling (Chen et al., 2007a; Moldovan and D'Andrea, 2009). However, its role in cytotoxicity of chloroethylating agents like FM is well described, as the chloroethyl group rearranges to a DNA-interstrand crosslink, which is repaired by the Fanconi anemia (FA) pathway in which FANCD2 serves as a damage sensor and repair-protein recruiter (Deans and West, 2011). As they were found to be downregulated by VPA and MS-275, both are interesting suspects for HDAC inhibitor-mediated sensitization of melanoma cells. A further characterization of doses and kinetics of HDAC inhibitor-driven downregulation of these proteins should enable a comparison to sensitization characteristics in section 4.1.3.1 and, therefore, a better estimation of its impact on the sensitization effect.

Firstly, the impact of HDAC inhibition on RAD51 and FANCD2 was analyzed in a panel of melanoma cell lines that was shown to respond to HDAC inhibitor-mediated sensitization (Figure
VPA pretreatment led to a decrease in both proteins as compared to the untreated control in all of the tested cell lines (Figure 19).

Figure 19 – Influence of VPA on RAD51 and FANCD2 protein in melanoma cells.
Melanoma cell lines (A375, A2058, G361, SK-Mel187 and Mel537) were treated with VPA (1 mM, 168 h) and whole-cell protein extracts were subjected to immunoblotting.

VPA decreased the level of RAD51 protein with increasing doses (Figure 20). This is in line with the HDAC inhibitor dose-dependent sensitization of melanoma cells to TMZ. In addition, the duration of VPA pretreatment defined the level of downregulation of RAD51 and FANCD2, which was also in accordance with a time-dependent sensitization.

Figure 20 – Time- and VPA concentration-dependent downregulation of DNA repair proteins.
D05 melanoma cells were treated with indicated doses of VPA for 168 h or with 1 mM VPA for indicated periods. Nuclear or whole cell extracts were subjected to immunoblotting.

To clarify whether the downregulation of RAD51 and FANCD2 is due to the HDAC inhibitory function of VPA, gene expression and protein levels in response to a second HDAC inhibitor, MS-275, were analyzed. Real-time PCR revealed a downregulation of RAD51 and FANCD2 upon MS-275 treatment to 15 % and 60 % of the basal levels in D05 and A375 cells, respectively (Figure 21 a). Measuring the protein levels of RAD51 and FANCD2 after increasing doses of MS-275 by
immunoblotting in D05 cells revealed a dose-dependent downregulation of both proteins (Figure 21 b).

Figure 21 – Regulation of RAD51 and FANCD2 by the HDAC inhibitor MS-275 in melanoma cells.

D05 and A375 melanoma cells were pretreated with MS-275 (1 µM, 72 h) and relative gene levels were measured by real time PCR (a). Whole cell protein extracts of MS-275 pretreated (0-1 µM, 72 h) D05 cells were subjected to immunoblotting (b).

Considering the model of O^6MeG-induced apoptosis, which requires two cell cycles of lesion-processing and the finding that D05 cells take approximately 46 h until they enter the second cell cycle (Figure 12 b), necessitated monitoring of RAD51 levels upon VPA removal. RAD51 protein levels were monitored by western blot analysis until 72 h after VPA removal to investigate if it was downregulated until required for repair of processing intermediates of O^6MeG. Furthermore, the influence of TMZ on RAD51 was assessed in this experiment. After VPA-pretreatment and removal, the downregulation of RAD51 protein was observed as previously described. This was visible up to 48 h after VPA removal (Figure 22). This coincided with when RAD51 is actually needed to repair DSBs occurring during the second S-phase after O^6MeG induction (Quiros et al., 2010). TMZ treatment alone did not influence RAD51 levels compared to the time-matched untreated controls 24 h and 48 h after addition. Although at 72 h, less protein was detected for TMZ-treated samples, irrespective of VPA pretreatment.
Figure 22 - Influence of VPA pretreatment and TMZ on RAD51 protein. VPA-pretreated (1 mM, 168 h) and untreated D05 melanoma cells were treated with TMZ (50 μM) or left untreated for controls. MGMT was depleted with O6BG (10 μM) 1 h before TMZ treatment. Nuclear protein extracts were taken at the indicated timepoints and were subjected to immunoblotting for RAD51 protein.

4.1.4.2.1 The functional consequence of HDAC inhibitor-mediated downregulation of DNA repair proteins

As we have shown, throughout the course of the experiment, RAD51 and FANCD2 levels are reduced by HDAC inhibition. However, residual protein levels were also detected leading to the question, what impact the reduced RAD51 and FANCD2 protein levels have on HR repair of DSBs induced by TMZ. To answer this, cells were generated which carry a pDRGFP plasmid, a construct with two modified non-functional GFP genes. One of them with an inserted I-SceI recognition site that can be cleaved by Intron-encoded endonuclease (I-SceI) leaving a 3’ four nucleotide overhang. The other is truncated but able to serve as a HR repair template for the cleaved GFP gene. Transfection of cells carrying the described plasmid with a second, I-SceI coding, plasmid leads to the expression of the endonuclease, resulting in a DSB that can be repaired in HR proficient cells leading to a wild type GFP detectable by flow cytometry.

VPA pretreated and untreated D05 and A375 cells carrying the pDRGFP plasmid were transfected with the I-SceI-coding plasmid after VPA removal. In both cell lines, VPA pretreatment reduced the number of GFP-positive cells by half compared to the untreated control, which means that VPA pretreated cells repaired only half of the I-SceI-induced DSBs by HR compared to repair in untreated cells (Figure 23).
Figure 23 - Influence of VPA pretreatment on DNA double-strand break repair capacity by homologous recombination.

D05 and A375 control and VPA-pretreated (1 mM, 168 h) pDRGFP cells were transiently transfected with I-SceI expressing plasmid. Cells were analyzed by flow cytometry 48 h (A375) or 72 h (D05) after transient transfection. Representative dot-plots (a, D05 pDRGFP#25, R-2/black-GFP positives) and quantification of three independent experiments are shown (b).

Since HDAC inhibitor-mediated downregulation of RAD51 negatively affects HR capacity, HDAC-inhibitor pretreatment might be the ideal prerequisite for combination with PARP inhibition. PARP1 inhibitors exploit the inability of HR-deficient cells to circumvent DNA lesions which then leads to apoptosis. PARP1 inhibitor-induced lesions are either bulky adducts of PARP1 and its inhibitor stuck to the DNA or unrepaired single-strand breaks which are encountered by a replication fork (Helleday, 2011). Thus, untreated and VPA-pretreated D05 cells were exposed to increasing doses of the PARP1 inhibitor Olaparib and the level of apoptosis was determined. Untreated cells were not affected even at high concentrations of Olaparib (20 μM), whereas in VPA-pretreated cells, the same dose induced 11% apoptosis (Figure 24).
Results

Figure 24 – PARP inhibitor-induced apoptosis in untreated and VPA-pretreated D05 cells.
D05 melanoma cells were pretreated with VPA (1 mM, 168 h) and treated with indicated doses of the PARP1 inhibitor Olaparib. Apoptosis was measured 72 h after Olaparib addition by Annexin-V/PI-staining and flow cytometry analysis.

This showed that the residual RAD51 and FANCD2 protein after HDAC inhibition is not sufficient to execute HR processes. In the absence or exhaustion of HR capacity, TMZ-induced O6MeG might lead to persistent DSBs. Therefore, the induction of DSBs after TMZ in control and VPA pretreated D05 cells was analyzed by γH2AX foci formation, a classical DSB marker. VPA pretreated cells display the same basal number of foci per cell as untreated cells. TMZ induced the highest amount of γH2AX foci after 48 h of treatment (3.7/cell) and the amount of TMZ-induced γH2AX foci was doubled in VPA pretreated cells (8/cell) (Figure 25 a, b). The higher amount of γH2AX foci remained until 72 h after TMZ treatment, but was no longer visible 96 h later. The analysis of γH2AX foci did not allow inclusion of cells that detached from the plate due to either apoptosis or mitosis, therefore, immunoblotting was carried out (Figure 25 c). This revealed that VPA pretreatment alone led to a phosphorylation of H2AX over the whole period of analysis (0-120 h after VPA-removal), most likely due to cell death, as it was shown in Figure 11 in D05 cells. Addition of TMZ to untreated D05 cells increased the γH2AX signal to a maximum at 120 h after addition. In VPA pretreated cells however, led to a much higher γH2AX signal from 48 h-120 h after TMZ addition.
Figure 25 - Influence of VPA pretreatment on TMZ-induced H2AX phosphorylation.
VPA-pretreated (1 mM, 168 h) and untreated D05 melanoma cells were treated with TMZ (10 µM) and stained for immunofluorescence. MGMT was depleted by O6BG (10 µM) 1 h before TMZ treatment. Representative image sections (48 h) (a) and quantification of foci (b) are shown. VPA-pretreated (1 mM, 168 h) and control D05 cells were treated with TMZ (50 µM, depletion of MGMT – 10 µM O6BG) and whole-cell protein extracts were taken at the indicated timepoints and were subjected to immunoblotting (c).

4.1.4.2.2 Role of RAD51 in sensitivity of melanoma cells to TMZ
This study identified that HDAC inhibition increases the sensitivity of melanoma cells to TMZ, coinciding with a downregulation of RAD51 and an elevation of potentially cytotoxic DSBs. Still, the role of RAD51 in the sensitivity of melanoma cells to TMZ has not been addressed. Therefore, stable clones of A375 melanoma cells were generated that carry a plasmid coding for shRNA targeting RAD51 mRNA and clones with the empty vector-backbone as a control. Knockdown was verified on protein level in nuclear protein extracts (Figure 26 a). Treatment of RAD51-knockdown cells with TMZ increased the apoptosis induction up to 40-50 % as compared to wild type and empty-vector control cells with only 20 % apoptosis induction after 50 µM of TMZ (Figure 26 b).
Results

4.1.5 Influence of the HDAC inhibitor VPA on RAD51 and melanoma tumor growth in vivo

To test whether the HDAC inhibitor-mediated RAD51 downregulation also applies to in vivo settings, Mel537 cells were injected subcutaneously into BALB/c immunodeficient nude mice and after tumor development, mice received intraperitoneal injections of PBS or VPA (200-500 mg/kg bwt) twice a day for five days. Mouse experiment was conducted by Dr. K. H. Tomaszowski until experiment termination. One out of three control mice was excluded from the analysis since it did not develop tumors. Tumor size was acquired throughout the treatment time and 2 h after the last injection mice were sacrificed and tumors were surgically harvested for immunoblotting analysis. Monitoring of tumor growth revealed a growth inhibitory effect of VPA alone when mice received at least 2 x 350 mg/kg body weight (bwt) (Figure 27 a). The highest dose
of 2 x 500 mg/kg bwt showed the biggest but insignificant tumor inhibitory effect and RAD51 protein levels at this dose were only slightly decreased in these tumors (Figure 27 b).

Figure 27 - Influence of HDAC inhibitor VPA on RAD51 and tumor growth in vivo.
Growth of Mel537 xenograft tumors in BALB/c nude mice treated with increasing doses of VPA (dose indicated was administered twice daily) (a). RAD51 protein levels of Mel537 xenografts in VPA treated (96 h, 500 mg/kg bwt) and untreated BALB/c nude mice (b) and quantification of immunoblots (c). Means of four tumors in two individuals (control) or six tumors in three mice (VPA) are shown. Error bars depict SEM.
4.2 Effect of histone deacetylase inhibition on the sensitivity of glioblastoma cells to TMZ

In the preceding sections it was shown that inhibition of class I HDACs by either VPA or MS-275 impairs HR, thereby sensitizes melanoma cells to the methylating agent TMZ, the chloroethylating agent FM and to IR. Since GBM is a tumor type that also exhibits low response rates to therapy and is treated with a comparable spectrum of DNA damaging therapies (TMZ and IR), the second part will focus on a combinational approach of HDAC inhibitors with TMZ in glioblastoma cells.

4.2.1 Effect of HDAC inhibitor pretreatment on the sensitivity of glioblastoma cells to TMZ

Initially, the effect of HDAC inhibitor pretreatment on TMZ sensitivity of a panel of GBM cell lines was tested. All of the cell lines displayed MGMT promoter methylation and were therefore MGMT deficient, this is important because TMZ rarely impacts on tumors without MGMT promoter methylation (Stupp et al., 2009). It is important to note that the cells differed in p53 and PTEN status. The tumor suppressor p53 is mutated in 25-30% of primary glioblastomas and determines the cell’s DNA damage response and sensitivity (LN229-proficient, LN308-deficient, LN428-mt, U87MG-wt). PTEN is impaired in 60% of glioblastoma by either loss of heterozygosity, mutation or promoter methylation and also accounts for sensitivity to DNA damaging agents (LN229-wt, LN308-null, LN428-mt, U87MG-wt) (Roos and Kaina, 2013). The cell lines were pretreated with VPA, which was removed before TMZ addition. Apoptosis measurement by AnnexinV-FITC/PI-staining and flow cytometry analysis 120 h after TMZ revealed that all cell lines were resistant to VPA alone and in three of the cell lines (LN229, U87MG and LN308) VPA pretreatment had no effect on TMZ-induced apoptosis (Figure 28 a). The only exception was LN428, which showed a slight, but not significant increase in TMZ-induced apoptosis in VPA pretreated cells as compared to cells that received TMZ only. This is in line with the regulation of RAD51 by VPA, which was examined 168 h after VPA pretreatment by western blot. VPA did not impact RAD51 levels in any of the cell lines (Figure 28 b).
Results

Figure 28 – Influence of the HDAC inhibitor VPA on sensitivity to TMZ and RAD51 protein levels of glioblastoma cells.

TMZ-induced (50 µM) apoptosis in VPA-pretreated (1 mM, 168 h) and control cells measured 120 h after TMZ treatment by AnnexinV-FITC/PI staining and flow cytometry analysis (a). RAD51 levels in VPA pretreated (1 mM, 168 h) and untreated control cells were determined by immunoblotting of whole-cell protein extracts (b).

Furthermore, pretreatment with the HDAC inhibitor MS-275 was analyzed in regard to glioma TMZ sensitivity. Therefore, the cells were pretreated with different doses of MS-275 for 72 h, which was then replaced by TMZ. In two of the cell lines (U87MG and LN308), no effect was observed for MS-275 in TMZ-induced apoptosis (Figure 29). In contrast, in LN229 and LN428 MS-275 pretreatment increased apoptosis induction upon TMZ by approximately 10 % as compared to TMZ alone.
Results

Figure 29 - Influence of pretreatment with the HDAC inhibitor MS-275 on TMZ sensitivity of glioblastoma cells.
TMZ-induced (50 µM) apoptosis in MS-275, VPA pretreated (72 h) cells was measured 120 h after TMZ treatment by AnnexinV-FITC/PI-staining and flow cytometry analysis.

4.2.2 Effect of HDAC inhibitor and TMZ co-treatment on glioblastoma cells
Having shown that pretreatment of GBM cells with HDAC inhibitors had, at most, marginal effects on TMZ-induced apoptosis, the simultaneous treatment of MS-275 and TMZ was tested so that also short-term effects of HDAC inhibition were included. Thus, the same panel of cell lines was again treated with different doses of MS-275, but 1 h later TMZ was added, without MS-275 removal. Apoptosis was measured at 120 h by AnnexinV/PI-staining and flow cytometry analysis. Again LN308 and U87MG were resistant, as neither TMZ nor the combination of MS-275 and TMZ induced more than 10% apoptosis (Figure 30). LN229 and LN428 cells, however, were greatly sensitized in the combination treatment. At the highest concentration of MS-275 (1.5 µM), 35% of LN229 cells and 20% of LN428 cells underwent apoptosis compared to single treatment with TMZ, after compensating for background apoptosis levels. At this concentration, the toxicity of MS-275 alone was very low as apoptosis induction was below 4% (Figure 30).
Results

Figure 30 - Influence of concomitant MS-275 treatment on TMZ-induced apoptosis in glioblastoma cells.

TMZ-induced (50 µM) apoptosis in MS-275-pretreated (72 h) cells was measured 120 h after TMZ treatment by AnnexinV-FITC/PI-staining and flow cytometry analysis.

Based on the finding that MS-275 ameliorated the response of some GBM cell lines to TMZ the question of the underlying mechanism arose. To answer which timeframe after drug exposure is relevant for the observed sensitizing effect, the kinetics of apoptosis induction were acquired for LN229 by Sub-G1 measurement. Whereas for TMZ alone and MS-275 alone, only a negligible amount of apoptosis was induced 96 h and 120 h after treatment, combination of both resulted in an increase in apoptosis induction from 72 h onwards (Figure 31). Together with the observation that the addition of MS-275 24 h after TMZ had a similar sensitizing effect (S 3), we speculated that TMZ-induced O6MeG is the lesion that LN229 cells are sensitized to upon treatment with MS-275.
Figure 31 – Kinetics of apoptosis induction upon TMZ and MS-275 treatment in LN229 glioblastoma cells.
LN229 cells were treated with TMZ (50 µM), MS-275 (1.5 µM), a combination of the two drugs or were left untreated for control and fixed at indicated times after exposure. Sub-G1 fraction was measured in PI stained cells by flow cytometry.

4.2.2.1 Regulation of RAD51 by MS-275 in glioblastoma cells

Immunoblots of whole-cell extracts of LN229 treated with MS-275, TMZ or both demonstrated that MS-275 single treatments downregulated the protein from 60 h post-treatment (Figure 32 a). The combination of both decreased protein levels even stronger, which was detected 24 h after treatment. To test whether the MS-275-mediated RAD51 downregulation has a functional impact, a possible synergistic effect with the PARP1 inhibitor Olaparib was tested. LN229 cells treated with Olaparib showed a marginal increase in apoptosis induction following increasing doses (up to 20 µM). Combination of Olaparib with MS-275 did not alter the response to Olaparib, indicating that RAD51 downregulation upon MS-275 did not have functional implications (Figure 32 b).

As RAD51 is regulated cell cycle-dependently and expressed in S and G2 phase, cell growth and cell cycle distribution was determined in response to MS-275. Untreated LN229 cells exhibit an exponential growth with a doubling time of approximately 24 h. MS-275-treated LN229 cells slowed down proliferation, so that between 96 h and 120 h of MS-275 almost no increase in cell number was observed (Figure 32 c). The average doubling time was elongated to 53 h. Analysis of cell cycle distribution provided a possible explanation for the anti-proliferative effect of MS-275. Two days after MS-275 addition, LN229 displayed reduced number of cells in S and G2 phase, which further decreased over time, so that 120 h after treatment only 8 % of cells were in S- and G2-phase compared to untreated cells out of which 27 % were in S- and G2-phase (Figure 32 d). MS-275 treated cells accumulated in G1. Consequently, the observed MS-275-mediated downregulation of RAD51 can likely to be attributed to the inhibitory effect of the HDAC inhibitor on proliferation and cell cycle progression.
Results

Figure 32 - MS-275-mediated downregulation of RAD51 in glioblastoma cells is due to the inhibition of proliferation and cell cycle progression.

RAD51 protein levels were analyzed in untreated and MS-275 (1.5 µM, 72 h) treated LN229 cells that were either additionally exposed to TMZ (50 µM) or left untreated for controls. Whole cell protein extracts of indicated timepoints were subjected to immunoblotting (a). Apoptosis induction by PARP1 inhibitor Olaparib and concomitant MS-275 (1.5 µM) treatment was assessed by AnnexinV-FITC/PI staining 72 h after treatment (b). Cell growth of LN229 cells in absence or presence of MS-275 (1.5 µM) was measured by counting cells at indicated timepoints and relating to the pretreatment cell numbers (c). Cell cycle distribution was analyzed in MS-275 (1.5 µM) treated or untreated LN229 cells by PI staining and flow cytometry analysis (d).
4.2.2.2 Cell cycle regulation upon MS-275 and TMZ co-treatment in glioblastoma cells

Since the classical model of cytotoxicity of O6MeG strictly depends on proliferation and S-phase progression and is characterized by the induction of a G2/M-arrest, the question arose, whether TMZ combined with MS-275 followed this cell cycle profile. Therefore, the cell cycle of TMZ treated and TMZ/MS-275 treated cells was acquired over 120 h by PI staining and flow cytometry analysis. TMZ treatment led to a G2/M arrest 48 h after treatment. At this time, the combination treatment also showed a high G2/M peak, though in addition many cells were detected with a DNA content characteristic for late S-phase (Figure 33). This cell cycle distribution was also observed 72 h after treatment. This indicates that even though proliferation is impaired after MS-275, it was still possible to undergo two cell cycles before accumulation of cells in G2/M. Interestingly, 96 h after TMZ treatment in the single-treated cells, a population with a DNA content of approximately 8n appeared that did not appear in the combined treatment with MS-275. This divergence was even more pronounced 120 h after treatment. Furthermore, 120 h after treatment approximately 40 % of cells treated with TMZ alone had a DNA content >4n whereas in a combination of MS-275 and TMZ the >4n population was almost completely lost (10 %). The process resulting from DNA replication without cytokinesis is referred to as endoreplication.

Figure 33 - Cell cycle distribution in LN229 cells exposed to MS-275 and TMZ and combination of both drugs.

LN229 cells were treated with MS-275 (1.5 µM), TMZ (50 µM), both or left untreated for control and fixed at indicated timepoints. Cells were stained with PI and analyzed by flow cytometry.
Results

4.2.2.3 DNA damage response of glioblastoma cells exposed to TMZ in combination with MS-275

Based on fundamentally different cell cycle profiles of TMZ treated and TMZ/MS-275 co-treated cells, we suspected an aberrant DNA damage response was causing this differential cell cycle control. Therefore, the TMZ-induced phosphorylation of ATR/ATM and their downstream targets, checkpoint kinases CHK1/CHK2, was assessed in LN229 cells by immunoblots. Whereas TMZ activated ATM as early as 24 h after treatment and stably until 96 h post-treatment, phosphorylation was absent following treatment with TMZ and MS-275 (Figure 34). Although ATR is activated 96 h after TMZ, phosphorylation is absent following combination treatment. CHK1 and CHK2 kinases are slightly activated 24-60 h after TMZ or TMZ/MS-275 combination, but highly phosphorylated 96 h after TMZ, but not after combined treatment. A decline in activation of ATR/ATM and CHK1/2 was likewise observed when the HDAC inhibitor MS-275 was applied 24 h after TMZ treatment (S4).

Collectively, these observations pointed to a MS-275-mediated disruption of DNA damage signaling which potentially results in aberrant p53 stabilization and p21Cip1/Waf1 transactivation. Testing this hypothesis by immunoblotting revealed increasing p53 levels upon TMZ accompanied with p21Cip1/Waf1 induction, both of which was abolished by MS-275 (Figure 35).

Figure 34 - Influence of the HDAC inhibitor MS-275 on TMZ-induced phosphorylation of DNA damage response proteins and checkpoint kinases.
Whole cell extracts of LN229 cells treated with MS-275 (1.5 µM), TMZ (50 µM), in combination or left untreated were subjected to immunoblotting to analyze DNA damage signaling.
Figure 35 – Influence of HDAC inhibitor MS-275 on TMZ-induced p53 stabilization and p21 induction in LN229 glioblastoma cells.

Whole cell protein extracts of LN229 cells treated with MS-275 (1.5 µM), TMZ (50 µM), in combination or left untreated for controls were subjected to immunoblotting.
5 Discussion

Cancer, as a life-threatening disease, is becoming one of the best-studied pathologies in medicine and biology. Scientific breakthroughs in the last century enabled the identification of cancer risk factors, biological features of cancer and better cancer diagnostics. For some cancer entities, research efforts resulted in improved therapy. However, for most malignancies, the translation of research into effective therapies is still lagging behind. This especially applies to exceptionally aggressive tumors like metastatic melanomas and glioblastomas. Patients suffering from these cancers display low median overall survival ranging between one and two years even with the most advanced therapies currently available (Chinot et al., 2014; Westphal et al., 2015; Stupp et al., 2014b; Robert et al., 2015).

Still, recent insights into mechanisms of resistance established new targets and avenues for therapeutic intervention. In the case of methylating agents, used to treat glioblastoma and malignant melanoma, the mechanism of cytotoxicity and opposing resistance mechanisms like HR proficiency and MGMT expression are widely understood (Tuominen et al., 2015; Stupp et al., 2009; Quiros et al., 2011). Further, resistance to apoptosis initiation limits sensitivity of these cancers to methylating agents (Roos et al., 2011). Given the prognostic role of the overexpression of HDACs and the anti-neoplastic effect of HDAC inhibitors that target the aforementioned resistance factors (West and Johnstone, 2014), warranted further investigation of the anti-neoplastic effects of combining HDAC inhibitors and methylating agents.

5.1 Inhibition of histone deacetylases sensitizes melanoma cells to methylating agents by impairing homologous recombination

To validate the use of cell lines as an appropriate model for examining a combinational therapy, class I HDAC levels were examined in a panel of melanoma cell lines. All of them expressed all class I HDACs, though comparison to non-cancerous cells revealed a significant overexpression of HDAC2 and HDAC3, a three-fold higher but non-significant elevation of HDAC1 and a negligible upregulation of HDAC8 (Figure 9). Thus, we demonstrated an HDAC upregulation in melanoma cells which justified the use of the class I HDAC inhibitors VPA and MS-275. Both were further shown to exhibit HDAC inhibitory action on melanoma cells as seen by increases in histone 3 and 4 acetylation (Figure 10). For further studies, two melanoma cell lines (D05 and A375) were used to measure the lethality in an HDAC inhibitor pretreatment scheme. After 168 h of VPA treatment, a 7% higher (over control) but non-significant apoptosis induction was observed in D05 cells. In A375 cells, VPA did not significantly affect apoptosis induction (Figure 11). Thus, D05 cells display a weak HDAC inhibitor response whereas A375 were non-responsive.
when the inhibitor was applied on its own, which is in line with the reported differential response of melanoma cell lines to HDAC inhibitors (Chang et al., 2012). The low response is further explained by the low concentrations of VPA (1 mM) used here in comparison to similar in vitro studies that achieved a higher toxicity with higher drug concentrations (Valentini et al., 2007). Since this work used HDAC inhibitors as an adjuvant to classical chemotherapy, a low response of HDAC inhibitor-single treatment was favored. It should further be noted, that due to the pretreatment approach, detached apoptotic cells induced by HDAC inhibition were removed before addition of the chemotherapeutic drug and therefore reduced basal apoptosis was measured for combination treatment experiments (e.g. VPA Figure 15 a) compared to that observed for VPA alone (Figure 11).

A prerequisite for combination of alkylating agents with HDAC inhibitors is the absence of cell cycle arrest and proliferation rate after pretreatment, as replication is required for alkylating agent-mediated toxicity (Quiros et al., 2010; Roos et al., 2004). However, in our test-system, no significant change in cell cycle distribution was observed in D05 and A375 cells (Figure 12). Though, VPA increased the amount of G1 cells from 65 % to 69 % in D05 cells and decelerated proliferation up to 24 h after HDAC inhibitor removal in this cell line, while not impacting on A375 cells (Figure 12). This again underlined that D05 slightly responds to VPA and A375 does not. Based on the mild effects of VPA observed in these cell lines, interference of VPA with DNA-damaging therapies was not expected.

Indeed, this study revealed that a combination of VPA pretreatment with genotoxic intervention acts synergistically in melanoma cells. Importantly, no synergy was observed in non-transformed primary melanocytes (Figure 13 b). A detailed comparison of the response to genotoxic stress in melanocytes to the response in malignant melanoma cells showed that melanocytes were less sensitive to TMZ and ionizing radiation than both melanoma cell lines and that FM induced approximately the same amount of apoptosis (8-11 %) in malignant and primary cells (Figure 13 b). The aforementioned treatment modalities exploit the proliferative phenotype of cancerous cells while sparing quiescent and differentiated cells (Helleday et al., 2008). This may explain why the slower cycling melanocytes were less affected by TMZ and IR. This may be even more pronounced in vivo, as the experimental system stimulated melanocyte proliferation whereas physiologically, melanocytes rarely divide (Cichorek et al., 2013). In addition to a replication block, FM induces transcription blocking-interstrand crosslinks that are thought to induce apoptosis (Ljungman and Zhang, 1996) independent of proliferation and, therefore, hit both: fast proliferating melanoma cells and slow dividing melanocytes and explains the similar response of both cell types to FM.

In combination of VPA with the alkylating agents TMZ and FM, pronounced differences between melanoma cells and melanocytes were observed. Both alkylating agents induced less apoptosis (reduction of ~30 %) in VPA pretreated melanocytes, while increasing apoptosis by 1.8-2.8 fold in
VPA pretreated melanoma cells (Figure 13 b). This supports the finding that HDAC inhibitors act selectively on transformed cells if applied alone (Bolden et al., 2013; Insinga et al., 2005). Our data extends the tumor selectivity of HDAC inhibitors by targeting melanomas and not their cells of origin (melanocytes) as well as to a sensitization effect to alkylating agents even in the absence of a (clear) response to the HDAC inhibitor alone. Consequently, combination of alkylating agents with HDAC inhibitors in melanoma cells confers selectivity in a dual way: by targeting highly proliferative cells (also applies to non-transformed cells) and by selectively targeting tumor cells. Although repeatedly reported, the underlying mechanism of cancer cell selectivity of HDAC inhibitors is still elusive. The concept of oncogene addiction (Weinstein, 2002) that assumes redundant pathways in non-transformed cells opposing one efficient and, therefore, targetable pathway in tumor cells might explain tumor selectivity (Dawson and Kouzarides, 2012). A second explanation assumes that epigenetic reprogramming during carcinogenesis leads to different outcomes in response to HDAC inhibitors, e.g. different expression of pro-apoptotic BCL2-genes (Bolden et al., 2013; Falkenberg and Johnstone, 2014).

Moreover, sensitization to TMZ was observed in a panel of melanoma cell lines differing in p53 and B-RAF status (Figure 14). Therefore, it can be regarded as independent from both resistance factors: p53 as a DNA repair-mediating resistance factor (Barckhausen et al., 2014; Naumann et al., 2009) and oncogenic B-RAF that was shown to be a negative prognostic marker in melanoma for therapy different than B-RAF inhibition (Long et al., 2011).

Based on the observation that apoptosis induction started 72 h after TMZ addition in combination treatments, (Figure 15 f) we speculated that O\[^6\]MeG is the lesion responsible for cell death. Therefore, we repeated the experiments in the absence of the synthetic substrate for MGMT (O\[^6\]BG) and, consequently, in the presence of MGMT activity. HDAC inhibitor pretreated cells that were exposed to TMZ in the presence of MGMT (without O\[^6\]BG) did not show an apoptotic response, which was also absent in cells treated only with TMZ (Figure 16). Thereby, we show that MGMT confers resistance to TMZ in control and HDAC inhibitor-pretreated cells. Secondly, our data reveal that HDAC inhibitor mediated sensitivity to TMZ can be attributed to the specific lesion O\[^6\]MeG since, only if MGMT is inactive (treatment with O\[^6\]BG), apoptosis is induced. This further shows that the MGMT downregulating effect of VPA is not sufficient to sensitize melanoma cells to TMZ. Regarding the translation into the clinic, this means that sensitization would be limited to MGMT promoter methylated tumors, which comprise 38 % of malignant melanomas (Hassel et al., 2010). Recent efforts tried to target MGMT tumor-selectively by conjugating MGMT inhibitors to folate (Javanmard et al., 2007) or by generation of a MGMT inhibitor analog, that, under hypoxic conditions reduces to functional O\[^6\]BG (Penketh et al., 2012). Both have proven to inactivate MGMT in in vitro studies. A promising effort to overcome the resistance factor MGMT is by transfer of autologous hematopoietic stem cells that express an O\[^6\]BG resistant MGMT. This attenuated myelosuppression in a combination of alkylating agents
with O^6BG and increased the number of TMZ-treatment cycles tolerated by patients as shown in a phase I clinical trial (Adair et al., 2014). These attempts might overcome MGMT-mediated resistance that could also expand the effectiveness of HDAC inhibitor-mediated sensitization.

In the absence of MGMT, resistance to O^6MeG-induced apoptosis has been attributed to pathways of DNA repair, apoptosis suppression and DNA damage signaling (Quiros et al., 2011; Eich et al., 2013; Roos et al., 2007; Roos et al., 2011). In our test system, VPA neither regulated pro-apoptotic BCL2 family members (BAX, $NOXA$, $PUMA$) on protein level, nor the anti-apoptotic BCL-2 protein (Figure 17). This is contradictory to publications that relate apoptosis induction and sensitization effects of HDAC inhibitors to the induction of BAX and/or the downregulation of BCL-2 (Vrana et al., 1999; Sonnemann et al., 2014; Jones et al., 2009). However, a direct comparison between the data obtained in this study with the data obtained in the published studies is difficult due to the use of different inhibitors and cell systems. However, the study by Papi and colleagues (Papi et al., 2010) analyzed both proteins in response to VPA in melanoma cells. The authors observed, in the mildly VPA sensitive G361 cell line (5 % apoptosis at 1 mM, 24 h), an upregulation of BAX (20 %) and a downregulation of BCL-2 (-20 %) at a concentration of 1 mM VPA.

Another suspect we found to be downregulated upon VPA is the damage signaling kinase ATR. In response to TMZ, phosphorylation of the ATR substrate CHK1 in D05 cells was delayed in VPA pretreated cells, though reaching the phosphorylation level of TMZ single treatment 48 h after TMZ addition (Figure 18). Most likely, this delay results from the observed retardation in growth, that was detected in VPA pretreated D05 cells 24 h after VPA removal (Figure 12 b), but not 48 h after HDAC inhibitor removal. Interestingly, TMZ induced phosphorylation of CHK1 by 3-6.6-fold increase over control after 24 h, which, in regard to the processing model of O^6MeG, is an early event. Early activation might arise directly from the recognition of adducted guanine:thymine by MMR (Yoshioka et al., 2006) or may reflect the heterogeneity of cell cycle progression in non-synchronized cells. This early activation however, is unlikely to be involved in apoptosis induction, as this occurs at later timepoints (72 h after TMZ).

With the VPA-mediated downregulation of the DNA repair proteins RAD51 and FANCD2 by 40-60 % in melanoma cells (Figure 17), we revealed a further prospective mechanism of HDAC inhibitor mediated sensitization to TMZ. This hypothesis is strengthened by a row of observations presented in this study. The panel of VPA-sensitizable melanoma cell lines showed a downregulation of RAD51 upon VPA pretreatment (Figure 14 and Figure 19). Further, VPA reduced RAD51 dose dependently, which is in line with a dose dependent sensitization of VPA pretreated cells (Figure 20 and Figure 15 c). Similarly, VPA pretreatment time determined the degree of sensitization as well as of RAD51 and FANCD2 reduction (Figure 20 and Figure 15 c). Experiments conducted with MS-275, that show sensitization to TMZ and RAD51/FANCD2
downregulation underline that both effects are likely attributed to the HDAC inhibitory function and that HDAC1, HDAC2 and HDAC3 are the relevant targets, as these are impeded by MS-275.

Early studies of HDAC inhibition in melanoma cells reported a reduction of KU proteins and DNA-PKcs, parts of NHEJ DSB repair pathway, to confer radiosensitivity (Munshi et al., 2005; Munshi et al., 2006). These findings were not reproduced in this work, since VPA did not impact on KU80 (Figure 17). On the other hand, research in prostate, colon and bone cancer cells confirmed the effect of HDAC inhibition on RAD51 expression, which coincided with an enhanced sensitivity to irradiation (Chinnaiyan et al., 2005; Adimoolam et al., 2007; Kachhap et al., 2010; Blattmann et al., 2010). This study confirms the aforementioned studies, as VPA pretreatment sensitized melanoma cells to irradiation. However, the effect of HDAC inhibition on alkylating agent-induced apoptosis was more pronounced than on IR-induced apoptosis in the cell lines tested (Figure 13). This supports the role of RAD51 and HR in HDAC inhibitor-mediated sensitization. DSBs induced by IR are primarily repaired via NHEJ, whereas TMZ or FM induce DSBs replication-dependently or block replication and therefore require HR for recovery. This makes alkylating agents a better choice in combination with HDAC inhibition. Further, if HDAC inhibitor-mediated impairment of HR also applies to other solid tumors a combination of HDAC inhibition with agents that replication-dependently introduce DNA-strand breaks might be a reasonable therapy approach. These agents are for instance topoisomerase inhibitors that are used for colon or lung cancer therapy.

In addition to RAD51, we identified FANCD2 as a novel mediator of HDAC inhibitor-induced sensitization. FANCD2 interacts with BRCA2 to mediate RAD51 filament formation during HR repair, although it is not essential for the repair event (Hussain et al., 2004; Wang et al., 2004; Ohashi et al., 2005). Further, FANCD2 stabilizes stalled replication forks, which, in the absence of FANCD2, is taken over by RAD51 (Schlacher et al., 2012). As both are diminished upon HDAC inhibitor treatment, combination of HDAC inhibition with agents that stall replication like Hydroxyurea, Gemcitarbin or 5-Fluorouracil might be a promising approach for fighting tumors treated with these agents. Apart from that, the damage-signaling and repair protein-recruiting function of FANCD2 in ICL repair indicates a possible sensitization to other crosslinking agents like cisplatin.

A recent treatment approach in BRCA1/2 deficient cancers exploits the absence of functional HR by introducing replication-dependent lesions with a PARP1 inhibitor. The inhibitor either traps PARP1 on the DNA which blocks replication, or it prevents the sealing of BER intermediate SSBs that result in stalled replication or one-ended DSBs (Hellday, 2011). In a HR proficient background, these lesions can be stabilized and repaired, whereas in cancer cells lacking HR, unrepaired lesions lead to cell death. Here, we showed that in accordance with the VPA-mediated reduction of RAD51/FANCD2 protein and reduced repair of DSBs by HR, PARP1 inhibition by Olaparib induced apoptosis (11 %) in VPA pretreated cells but not in control cells (2 %) (Figure
24). This underlines the functional impairment of HR brought about by VPA-mediated RAD51/FANCD2 suppression. Remarkably, the HDAC inhibitor-mediated sensitization to PARP1 inhibition is independent of MGMT and therefore most likely applicable to all melanomas.

HR was shown, in glioblastoma cells, to repair DSBs induced by O^6MeG; thereby protecting against methylating agent-induced cell death (Quiros et al., 2011). Accordingly, we showed in VPA pretreated melanoma cells, and therefore, HR impaired cells, a higher number of TMZ-induced γH2AX foci 48 h after TMZ. However, the number of γH2AX foci decreased in VPA pretreated cells 72 h after TMZ addition despite the impairment of HR (Figure 25 a and b). This contradicts the findings in glioblastomas, where TMZ induced the same number of γH2AX foci in RAD51 knockdown and parental cells, but repair was impaired in knockdown cells. The findings in VPA pretreated cells rather point to a higher induction of DSBs by TMZ, which is followed by a reduction at later timepoints (72-96 h post-treatment). Though, the decrease in DSBs does not necessarily result from repair. We speculated that the reduction of γH2AX foci 72 h and 96 h after TMZ treatment resulted from severely damaged cells that underwent apoptosis, detached from the growth surface and were not included in immunofluorescent analysis. Western blot analysis of γH2AX performed on protein extracts, including detached cells, showed high H2AX phosphorylation 48 h after TMZ addition in VPA pretreated cells and only slight phosphorylation in cells only treated with TMZ (Figure 25 c). In contrast to foci analysis, this remarkable difference remained for up to 120 h post-treatment with TMZ. Importantly, H2AX is also phosphorylated during apoptotic DNA fragmentation (Rogakou et al., 2000), thus impeding distinction of TMZ- and apoptosis-induced γH2AX. Still, the initial difference in H2AX phosphorylation, which was detected by immunofluorescence and by western blot, suggests a higher induction of DSBs by TMZ in VPA pretreated cells. As divergence of foci number and overall H2AX appears at the timepoint of apoptosis induction (72 h), the reduction of foci number in VPA pretreated cells could be linked to the detachment of severely damaged apoptotic cells.

Apoptotic H2AX phosphorylation further explains the high basal γH2AX in VPA pretreated cells and is in accordance with the slight responsiveness of D05 cells to VPA alone (Figure 11 and Figure 15 a, b and f).

To clarify whether RAD51 and HR actually confer resistance to TMZ in melanoma cells, apoptosis induction was examined in A375 RAD51 knockdown cells. The higher apoptosis induction in RAD51 knockdown cells, compared to the untransfected and empty transfected cells, clearly links HR to TMZ resistance (Figure 26). Therefore, HDAC inhibitor-mediated suppression of RAD51, FANCD2 and HR represents a plausible explanation for the sensitization effect to TMZ in melanoma. Furthermore, the influence of RAD51 on TMZ sensitivity is in accordance with findings in glioma and CHO cells (Quiros et al., 2011; Roos et al., 2009), strengthening HR as a general resistance mechanism for S_{N1} methylating agents.
Furthermore, we analyzed RAD51 downregulation in vivo using a Mel537 xenograft mouse model. The RAD51 levels in tumors of mice receiving 2 x 500 mg/kg bwt were slightly decreased by 13%. For mice receiving at least 350 mg/kg bwt twice daily, an inhibitory effect was observed on tumor growth, though it was not significant (Figure 27). This contrasts with a study conducted with colon cancer xenografts that achieved a reduction of RAD51 in the tumor tissue with the pan-HDAC inhibitor abexinostat (Adimoolam et al., 2007). It should be noted that, in our work, animal groups were small (three mice for VPA treatments, two mice in control group since a third did not develop tumors) and may not be representative. Therefore, further experiments with a higher number of animals are required to clarify the in vivo potential of a combinational therapy with HDAC inhibitors and TMZ. Furthermore, MS-275 as a more specific HDAC inhibitor should be tested.
Figure 36 – Mechanism of HDAC inhibitor mediated sensitization to genotoxic stress.
HDAC inhibition reduces RAD51 and FANCD2 protein levels; thereby leading to an accumulation of one-ended double-strand breaks and the induction of apoptosis (right). Whereas in the absence of an HDAC inhibitor, DSBs are repaired via HR, leading to survival (left).

In conclusion, this study demonstrates a sensitization of melanoma cells by HDAC inhibition to DNA damage, in particular to replication-associated damage. This results from a transcriptional downregulation of the DNA repair proteins RAD51 and FANCD2, which attenuates HR processes and lowers the apoptosis threshold of lesions needed to initiate cell death (Figure 36).
5.2 Combination of histone deacetylase inhibition and TMZ partially sensitizes glioblastoma cells by disruption of DNA damage signaling

Even though drivers of GBM like EGF-receptor, VEGF or specific integrin expression (Verhaak et al., 2010; Plate et al., 1992; Schnell et al., 2008) were recently discovered and can be targeted therapeutically, corresponding clinical trials failed to improve overall survival of patients (Westphal et al., 2015; Chinot et al., 2014; Stupp et al., 2014b). On the other hand, the use of VPA as an antiepileptic drug against seizures in GBM patients allowed retrospective analyses of its influence on survival. These studies revealed an improvement of overall survival in patients receiving IR, TMZ and VPA compared to chemo/radiotherapy alone (Weller et al., 2011; Barker et al., 2013). In vitro studies confirmed a sensitization effect of HDAC inhibitors on DNA damage-induced apoptosis in GBM cells (Das et al., 2007; Pont et al., 2015), though its mechanism remains widely unclear. Therefore, we hypothesized a similar mechanism of HDAC inhibitors as found in melanoma cells that could sensitize GMB cells to DNA damaging agents. More precisely, this would include the downregulation of the HR proteins RAD51 and FANCD2, leading to reduced repair and increased apoptosis induction.

The response of GBM cell lines (LN229, LN428, U87MG and LN308) to TMZ was tested with and without HDAC inhibitor pretreatment. VPA did not significantly modify the response to TMZ in any of the four tested cell lines, which was in line with constant RAD51 protein levels after VPA pretreatment. The same panel of cell lines was tested with MS-275 pretreatment in combination with TMZ. Two of the cell lines (LN229 and LN428) responded to the pretreatment with an approximately 10% higher apoptosis induction than TMZ alone (Figure 28 and Figure 29). Two other cell lines (U87MG, LN308) did not respond. This agrees with preclinical studies in glioblastoma cells that show only mild and non-significant effects of pretreatment with an HDAC inhibitor on TMZ sensitivity at clinically relevant doses (Bangert et al., 2011; Van Nifterik et al., 2012).

To imitate the treatment, which was shown to be beneficial in GBM patients receiving chemoradiation and an HDAC inhibitor, the influence of MS-275 on TMZ-induced apoptosis was analyzed when given concomitantly. In U87MG and LN308 glioblastoma cells, no effect of the double treatment was observed. However, the two PTEN-proficient cell lines that were already slightly sensitized by MS-275 pretreatment (LN229 and LN428) were highly sensitized by simultaneous treatment with MS-275 and TMZ showing a 2.5-8.5 fold increase in apoptosis. The response was dependent on MS-275 dose, though LN428 cells displayed a linear response, while LN229 cells did not (Figure 30). This might indicate different mechanisms of sensitization.
We showed in a time-dependent analysis of apoptosis induction in LN229 cells that cells start to undergo apoptosis 72 h after TMZ addition following combined treatment (Figure 31), again supporting a sensitization to O6MeG based on the late induction of apoptosis as per the findings in melanoma. The observed MS-275-mediated downregulation of RAD51 in LN229 cells further affirms this assumption (Figure 32 a). Surprisingly, reduced RAD51 levels did not lead to increased sensitivity to PARP1 inhibition as expected due to synthetic lethal interaction of HR impairment and PARP1 inhibition (Figure 32 b). This means, that the protein reduction may not have a functional consequence in LN229 cells. This could be explained by the cell-cycle dependent regulation of RAD51 as G1/G0 cells do not express the protein (Chen et al., 1997; Flygare et al., 1996). In this situation, cells are not susceptible to replication-dependent toxins like PARP1-inhibitors. Indeed, we showed that MS-275 treatment accumulated cells in G1/G0 from 72 h (Figure 32 c) and was accompanied by proliferation attenuation (Figure 32 d), which provides evidence for a late cell cycle-dependent downregulation of RAD51 with no functional implication in replication-dependent stressors like PARP inhibitors or O6MeG. Of importance, MS-275 treated cells still divided at least two more times, meaning that O6MeG may still be responsible for induced apoptosis, though (lack of) repair of processing intermediates is not.

An HR-independent mechanism for MS-275-mediated sensitization to TMZ in LN229 cells may be explained by varying cell cycle distributions in combination treatment compared to single treatment. Here it was shown that combination of TMZ with MS-275 increased cells with a DNA content representative for late S-phase cells (48 h, 72 h, 96 h). In contrast, TMZ single treatment firstly induced an arrest at G2/M (>48 h) and later an increase in cells with a DNA content >4n (Figure 33), indicative of cells that underwent reduplication. Since the increase in reduplicated cells in TMZ single treatment correlates with the increase in Sub-G1 cells in combination treatment, we speculated that preventing reduplication and/or G2/M arrest might drive cells receiving combined treatment into apoptosis instead of reduplication.

As ATM and ATR kinases are principle regulators of cell cycle arrest in response to DNA damage, both were analyzed upon TMZ treatment alone and in combination with MS-275. This study demonstrates that DNA damage induced signaling is lost in combination of TMZ with HDAC inhibition, although it is present following TMZ alone (Figure 34). This means that TMZ single treated cells activate ATM and ATR, as well as downstream targets to initiate cell cycle arrest, specifically at G2/M, which are well-known events upon S\textsubscript{N}1 methylating agents (Quiros et al., 2010; Eich et al., 2013; Stojic et al., 2004; Caporali et al., 2004). An elongation of G2-phase is a prerequisite for re-replication. A G2/M-arrest is shown in our data by an increase of 4n cells during TMZ treatment (Figure 33). It is known that a subsequent mitosis can be prevented by sustained ATM/ATR activation and its downstream factors CHK1/CHK2, which inactivate cdc25 so that CDK1/Cyclin B is not activated and mitosis not initiated. This was shown to occur in response to the radiomimetic drugs Bleomycin and Zeocin, as well as upon telomeric ATR/ATM activation.
Discussion

Despite a sustained G2/M arrest, cells can degrade Geminin, a protein which blocks replication by inactivating the origin licenser Cdt1 and that is degraded in late mitosis during the normal cell cycle. Therefore, cells that are arrested in G2 long enough for Geminin degradation to occur, replicate DNA in the absence of mitosis; leading to polyploid cells (Nakayama et al., 2009; Davoli et al., 2010). Our observation of increasing numbers of polyploid cells upon TMZ treatment supports a similar mechanism in this test system, although this was not tested. Notably, geminin depletion-induced over-replication is independent of p53 status (Zhu et al., 2004) and could apply to the responder cell lines LN229 (p53 proficient) and LN428 (TP53 mt).

In contrast, during combination treatment, neither ATM/ATR nor their downstream targets CHK1/CHK2 are activated, which might result in an impaired G2/M block. Cells would then enter mitosis bearing DNA damage, which could drive them into mitotic catastrophe. In fact, DNA damage was shown to induce mitotic catastrophe in the absence of CHK activation. Mitotic catastrophe is a type of cell death which displays features of apoptosis like phosphatidylserine exposure and DNA fragmentation (Kimura et al., 2013; Castedo et al., 2004), which would be detected in our apoptosis assays. Another observation substantiates the hypothesis of mitotic catastrophe cell death in co-treated cells: from 48 h post-treatment, co-treated cells show an increase of cells with a DNA content between 2n and 4n. These are not necessarily S-phase cells, since death related DNA degradation likewise generates intermediates with a comparable DNA content.

A reduction of CHK1 and/or CHK2 on protein level by HDAC inhibition has already been published, though their activation upon DNA damage and HDAC inhibition has not been analyzed (Brazelle et al., 2010; Cornago et al., 2014). In the case of CHK1, we found a low protein level but a high phosphorylation status 96 h after TMZ, whereas the combination treatment resulted in low protein and low activation (Figure 34). Therefore, HDAC inhibition may target the phosphorylation of checkpoint proteins. This is further supported by the finding that the upstream ATM kinase is also activated in TMZ single treatment but not in combination with MS-275.

A further question remains: what is the fate of endoreplicated cells in TMZ single treatment? Polyploidy is linked to senescence (Wagner et al., 2001; Yang et al., 2007), a state of cellular quiescence that can be induced by sustained damage signaling leading to expression of CDK inhibitors p21Cip1/Waf1 or p16INK4a. It is likely that polyploid cells, resulting from TMZ treatment alone enter a state of senescence as p21Cip1/Waf1 was shown to be induced following activation of ATM, CHK and consequently p53 stabilization (Figure 35). Additionally, senescence is a well described consequence of TMZ in glioblastoma cells (Knizhnik et al., 2013; Hirose et al., 2001b). Senescence as an end point of therapy is rather disadvantageous, because cells with a senescent phenotype were shown to re-enter the cell cycle in absence of damage signaling instead of being arrested permanently (Wang et al., 2013; d'Adda di Fagagna et al., 2003; Davoli et al., 2010).
Discussion

These cells could potentially contribute to relapse (Elmore et al., 2005; Roberson et al., 2005). Secondly, cells that enter senescence upon DNA damage secrete cytokines like interleukin 6 which increase invasion and resistance to chemotherapeutics (Rodier et al., 2009; Campisi, 2013). Since induction of senescence and mitotic catastrophe are mutually exclusive, elimination of cancer cells by mitotic catastrophe is more desirable.

In summary, we present a sensitization approach in a subset of glioblastoma cell lines that is based on HDAC inhibitor-mediated disruption of TMZ-induced ATM/ATR and subsequent CHK activation. This leads to a loss of G2/M arrest and entry into mitosis is unperturbed despite the presence of DNA damage, resulting in mitotic catastrophe and apoptosis (Figure 37).

Even though the presented data are in accordance with the proposed model, further analyses are required for confirmation. On the one hand, the presence/absence of G2/M blockage needs to be confirmed by molecular markers like CHK downstream targets and their phosphorylation status like cdc25C and Wee1. Both modulate CDK1, which is required for entry into mitosis. Phosphorylation by cdc25 activates CDK1 whereas dephosphorylation by Wee1 inactivates it (Reinhardt and Yaffe, 2009). Accordingly, analysis of the CDK1 activation status would likewise confirm G2/M arrest. On the other hand, initiation of mitotic catastrophe needs to be shown with indicators like cleavage of caspase-2. Furthermore, abolishment of TMZ induced ATM/ATR/CHK activation in the presence of MS-275 needs to be verified in further cell lines to exclude that this resistance mechanism is limited to LN229 and LN428 glioblastoma cell lines.

Figure 37 – Proposed mechanism of HDAC inhibitor-mediated sensitization to TMZ in glioblastoma cells.

TMZ-induced single-ended double strand breaks activate ATM/ATR and lead to a CHK-induced G2 arrest followed by endoreplication and senescence (left). CHK is not activated in the presence of MS-275 and cells bearing DNA damage proceed to mitosis where they undergo mitotic catastrophe (right).
5.3 Outlook

We have shown that HDAC inhibitors increase the apoptotic response to TMZ in melanoma cells by impairing HR, and in glioblastoma cells, by disrupting the DNA damage response. In fact, we further excluded that modification of damage signaling is involved in HDAC mediated sensitization in melanomas as well as RAD51 being involved in sensitization of GBM cells. This illustrates once again, that therapy resistance relies on a variety of mechanisms that not only differ between tumor entities but also between tumors of one entity as not all GBM cell lines responded to the treatment. Nevertheless, we found two resistance mechanisms that are targetable by HDAC inhibitors that provide a basis for further research, which could reveal insights into the underlying mechanisms of resistance. One such point is the observed downregulation of RAD51 and FANCD2, which was observed to occur at transcriptional level after HDAC inhibition in melanomas. Investigating how this is regulated for instance by modulation of transcription factors, promotor methylation or miRNAs might also reveal the difference why other tumor entities like glioblastoma do not respond to this pathway. Similarly, an investigation of the loss of ATM/ATR phosphorylation by HDAC inhibition could offer a prediction of the molecular requirements of responding and non-responding cells. The reduced ATM/ATR phosphorylation might arise from lower protein levels, impairment of autophosphorylation or increased dephosphorylation. Another question remaining is the impact of each HDAC (HDAC1, HDAC2, HDAC3) in the respective sensitization modes since effects seen with MS-275 only display the sum of inhibiting all three.

This work expands on the numerous therapy-improving features of HDAC inhibitors and transferred it to two remarkably therapy resistant tumor types, namely malignant melanoma and glioblastoma. Based on this and on the characteristic of HDAC inhibitors as being well tolerated, a therapy of alkylating agents with adjuvant HDAC inhibitor is a promising approach for improving the poor prognoses of patients suffering from GBM or metastatic melanoma.
6 References

References

metastatic melanoma: a multicentre, open-label, phase 3 randomised controlled trial.

References

References

References

Roos, W. P., Nikolova, T., Quiros, S., Naumann, S. C., Kiedron, O., Zdzie nicka, M. Z. and Kaina, B. (2009) Brca2/Xrcc2 dependent HR, but not NHEJ, is required for protection against O(6)-methylguanine triggered apoptosis, DSBs and chromosomal aberrations by a process leading to SCEs. DNA Repair (Amst), 8, 72-86.

SEER - The Surveillance, Epidemiology, and End Results (SEER) Program of the National Cancer Institute (2015) Melanoma of the Skin (Invasive), SEER Incidence and U.S. Mortality, Age-Adjusted Rates and Trends By Race/Ethnicity and Sex. Surveillance, Epidemiology, and End Results (SEER) Program.

7 Supplementary information

7.1 Supplementary figures and tables

S 1 - Influence of VPA on HDAC protein levels.
Whole cell protein extracts of indicated melanoma cell lines, treated with VPA (1 mM, 168 h) or left untreated for controls, were subjected to immunoblotting.

S 2 - TMZ-induced CHK2 phosphorylation in control and VPA pretreated melanoma cells.
Whole cell protein extracts of VPA pretreated (1 mM, 168 h) and untreated D05 and A375 cells were exposed to TMZ (50 μM). MGMT was depleted with O6BG (10 μM) 1 h prior to TMZ treatment. At indicated times, total protein was extracted and subjected to immunoblotting.
S 3 - Apoptosis induction by TMZ and late addition of MS-275.
LN229 cells were treated with TMZ (50 µM, 120 h) or additionally with MS-275 (2 µM) 24 h after TMZ treatment. Apoptosis was assessed by AnnexinV-FITC/PI staining and flow cytometry analysis.

S 4 - Influence of MS-275 on TMZ-induced damage response.
Whole cell extracts of LN229 cells treated with TMZ (50 µM) and MS-275 (2 µM) 24 h later, single treated or untreated were subjected to immunoblotting to analyze damage signaling.
S 5 – VPA regulated genes.
D05 melanoma cells were treated with VPA (1 mM, 168 h) and gene expression was assessed by a real-time based PCR array. Relative expression (Rel. expression) is related to untreated controls.

<table>
<thead>
<tr>
<th>Gene</th>
<th>Rel. expression</th>
<th>SD</th>
<th>Gene</th>
<th>Rel. expression</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABH</td>
<td>0.94 ± 0.33</td>
<td></td>
<td>MMP 3</td>
<td>0.17 ± 0.06</td>
<td></td>
</tr>
<tr>
<td>APAF1</td>
<td>1.26 ± 0.53</td>
<td></td>
<td>MNAT1</td>
<td>1.18 ± 0.53</td>
<td></td>
</tr>
<tr>
<td>APEX 1</td>
<td>0.88 ± 0.06</td>
<td></td>
<td>MPG</td>
<td>1.13 ± 0.14</td>
<td></td>
</tr>
<tr>
<td>APTX</td>
<td>1.06 ± 0.36</td>
<td></td>
<td>MRE 11A</td>
<td>1.15 ± 0.23</td>
<td></td>
</tr>
<tr>
<td>ARTEMIS</td>
<td>0.89 ± 0.32</td>
<td></td>
<td>MSH 2</td>
<td>1.04 ± 0.18</td>
<td></td>
</tr>
<tr>
<td>ATG 5</td>
<td>1.33 ± 0.12</td>
<td></td>
<td>MSH3</td>
<td>0.92 ± 0.86</td>
<td></td>
</tr>
<tr>
<td>ATG 7</td>
<td>1.52 ± 0.10</td>
<td></td>
<td>MSH6</td>
<td>0.83 ± 0.08</td>
<td></td>
</tr>
<tr>
<td>ATM</td>
<td>1.25 ± 0.70</td>
<td></td>
<td>MTH1</td>
<td>0.98 ± 0.32</td>
<td></td>
</tr>
<tr>
<td>ATR</td>
<td>0.54 ± 0.41</td>
<td></td>
<td>MUS81</td>
<td>1.09 ± 0.13</td>
<td></td>
</tr>
<tr>
<td>ATRX</td>
<td>0.75 ± 0.28</td>
<td></td>
<td>MYH</td>
<td>0.80 ± 0.20</td>
<td></td>
</tr>
<tr>
<td>BAX</td>
<td>2.95 ± 2.05</td>
<td></td>
<td>NBS1</td>
<td>0.71 ± 0.33</td>
<td></td>
</tr>
<tr>
<td>BCL 2</td>
<td>0.66 ± 0.33</td>
<td></td>
<td>NEIL1</td>
<td>0.90 ± 0.45</td>
<td></td>
</tr>
<tr>
<td>BCL-XL</td>
<td>0.85 ± 0.05</td>
<td></td>
<td>NOXA</td>
<td>2.59 ± 0.26</td>
<td></td>
</tr>
<tr>
<td>BECN 1</td>
<td>1.52 ± 0.22</td>
<td></td>
<td>NTH1</td>
<td>1.43 ± 0.89</td>
<td></td>
</tr>
<tr>
<td>BID</td>
<td>1.26 ± 0.21</td>
<td></td>
<td>OGG 1</td>
<td>0.97 ± 0.24</td>
<td></td>
</tr>
<tr>
<td>BLM</td>
<td>0.73 ± 0.38</td>
<td></td>
<td>P21</td>
<td>1.79 ± 1.01</td>
<td></td>
</tr>
<tr>
<td>BRCA 1</td>
<td>0.82 ± 0.16</td>
<td></td>
<td>PARP 1</td>
<td>1.03 ± 0.15</td>
<td></td>
</tr>
<tr>
<td>BRCA 2</td>
<td>1.19 ± 0.16</td>
<td></td>
<td>PARP4</td>
<td>1.08 ± 0.46</td>
<td></td>
</tr>
<tr>
<td>CASP 2</td>
<td>1.20 ± 0.49</td>
<td></td>
<td>PCNA</td>
<td>0.83 ± 0.35</td>
<td></td>
</tr>
<tr>
<td>CCNA 1</td>
<td>18.29 ± 5.33</td>
<td></td>
<td>PMS2</td>
<td>0.94 ± 0.40</td>
<td></td>
</tr>
<tr>
<td>CCNE 1</td>
<td>1.37 ± 0.21</td>
<td></td>
<td>PNKP</td>
<td>0.96 ± 0.30</td>
<td></td>
</tr>
<tr>
<td>CCNH</td>
<td>0.94 ± 0.34</td>
<td></td>
<td>POLH</td>
<td>0.83 ± 0.16</td>
<td></td>
</tr>
<tr>
<td>CDC 25A</td>
<td>1.04 ± 0.28</td>
<td></td>
<td>POLI</td>
<td>1.05 ± 0.23</td>
<td></td>
</tr>
<tr>
<td>CDC 25B</td>
<td>0.77 ± 0.19</td>
<td></td>
<td>POLK</td>
<td>1.49 ± 1.29</td>
<td></td>
</tr>
<tr>
<td>CDC 25C</td>
<td>0.91 ± 0.19</td>
<td></td>
<td>POLQ</td>
<td>0.94 ± 0.32</td>
<td></td>
</tr>
<tr>
<td>CDK7</td>
<td>0.95 ± 0.51</td>
<td></td>
<td>PRKDC</td>
<td>1.28 ± 0.12</td>
<td></td>
</tr>
<tr>
<td>CDKN 1A</td>
<td>2.11 ± 0.83</td>
<td></td>
<td>PTEN</td>
<td>1.64 ± 0.17</td>
<td></td>
</tr>
<tr>
<td>CDKN 1B</td>
<td>1.73 ± 0.19</td>
<td></td>
<td>PUMA</td>
<td>2.66 ± 1.26</td>
<td></td>
</tr>
<tr>
<td>CHEK 1</td>
<td>1.24 ± 0.33</td>
<td></td>
<td>RAC 1</td>
<td>0.35 ± 0.34</td>
<td></td>
</tr>
<tr>
<td>CHEK 2</td>
<td>1.27 ± 0.20</td>
<td></td>
<td>RAD 51</td>
<td>0.37 ± 0.24</td>
<td></td>
</tr>
<tr>
<td>C-IAP 1</td>
<td>3.11 ± 0.75</td>
<td></td>
<td>RAD1</td>
<td>1.69 ± 1.90</td>
<td></td>
</tr>
<tr>
<td>C-JUN</td>
<td>1.14 ± 0.30</td>
<td></td>
<td>RAD17</td>
<td>1.49 ± 0.23</td>
<td></td>
</tr>
<tr>
<td>CSA</td>
<td>0.79 ± 0.32</td>
<td></td>
<td>RAD50</td>
<td>1.12 ± 0.59</td>
<td></td>
</tr>
<tr>
<td>CSB</td>
<td>1.02 ± 0.38</td>
<td></td>
<td>RAD51B</td>
<td>1.06 ± 0.69</td>
<td></td>
</tr>
<tr>
<td>CYP 1A1</td>
<td>3.46 ± 0.65</td>
<td></td>
<td>RAD51C</td>
<td>1.04 ± 0.44</td>
<td></td>
</tr>
<tr>
<td>Gene</td>
<td>Value</td>
<td>Gene</td>
<td>Value</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>-----------</td>
<td>------------</td>
<td>-----------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DDB 2</td>
<td>1.20 ± 0.18</td>
<td>RAD51D</td>
<td>0.65 ± 0.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DDIT 3</td>
<td>0.76 ± 0.11</td>
<td>RAD52</td>
<td>1.04 ± 0.64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DNMT</td>
<td>0.83 ± 0.31</td>
<td>RAD54B</td>
<td>0.68 ± 0.12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DUT</td>
<td>0.68 ± 0.24</td>
<td>RAD9A</td>
<td>1.00 ± 0.06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EME1</td>
<td>0.80 ± 0.22</td>
<td>RB1</td>
<td>0.97 ± 0.30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ERCC 1</td>
<td>1.95 ± 0.20</td>
<td>RECQL 1</td>
<td>1.12 ± 0.14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EXO1</td>
<td>0.97 ± 0.38</td>
<td>REV 1</td>
<td>1.05 ± 0.81</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FAN1</td>
<td>0.58 ± 0.30</td>
<td>REV 3</td>
<td>1.28 ± 0.20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FANC C</td>
<td>1.49 ± 0.23</td>
<td>REV7</td>
<td>1.04 ± 0.71</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FANCA</td>
<td>0.81 ± 0.35</td>
<td>RHO A</td>
<td>0.91 ± 0.21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FANCB</td>
<td>1.26 ± 0.58</td>
<td>RHO B</td>
<td>1.24 ± 0.19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FANC D2</td>
<td>0.67 ± 0.22</td>
<td>RNA POL II</td>
<td>0.75 ± 0.13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FANCE</td>
<td>0.93 ± 0.28</td>
<td>SLX</td>
<td>1.37 ± 0.60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FANC F</td>
<td>1.12 ± 0.48</td>
<td>SMC 5</td>
<td>1.76 ± 0.32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FANC G</td>
<td>0.98 ± 0.34</td>
<td>SMC 6</td>
<td>1.31 ± 0.18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FANC I</td>
<td>1.09 ± 0.25</td>
<td>SMUG1</td>
<td>1.91 ± 1.19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FANC J</td>
<td>0.97 ± 0.66</td>
<td>SOD 1</td>
<td>1.01 ± 0.11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FANCL</td>
<td>1.31 ± 0.54</td>
<td>SURVIVIN</td>
<td>0.86 ± 0.21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FANC M</td>
<td>0.87 ± 0.76</td>
<td>T53BP1</td>
<td>1.03 ± 0.62</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FANC N</td>
<td>0.89 ± 0.22</td>
<td>TDG</td>
<td>0.30 ± 0.34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FAS-R</td>
<td>0.91 ± 0.30</td>
<td>TERT</td>
<td>1.01 ± 0.42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FEN 1</td>
<td>1.08 ± 0.15</td>
<td>TNKS</td>
<td>1.30 ± 0.44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FOS</td>
<td>0.90 ± 0.06</td>
<td>TOP3A</td>
<td>1.11 ± 0.55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GADD 45A</td>
<td>2.37 ± 0.07</td>
<td>TOP3B</td>
<td>1.12 ± 0.37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GADD45B</td>
<td>0.66 ± 0.08</td>
<td>TOPO II A</td>
<td>0.93 ± 0.27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GPX 1</td>
<td>1.28 ± 0.32</td>
<td>TOPO II B</td>
<td>1.22 ± 0.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GSTM 1</td>
<td>1.48 ± 0.55</td>
<td>TRP 53</td>
<td>0.80 ± 0.11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HIF 1A</td>
<td>1.41 ± 0.35</td>
<td>TRP 73</td>
<td>1.71 ± 1.39</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HMOX 1</td>
<td>1.23 ± 0.48</td>
<td>TXNRD 1</td>
<td>1.70 ± 0.62</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HSP 90</td>
<td>0.79 ± 0.24</td>
<td>UNG2</td>
<td>0.75 ± 0.24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HSPA 1B</td>
<td>0.99 ± 0.18</td>
<td>WRN</td>
<td>1.30 ± 0.44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUS 1</td>
<td>0.97 ± 0.29</td>
<td>WRNIP 1</td>
<td>1.30 ± 0.38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IL 6</td>
<td>2.07 ± 0.50</td>
<td>XIAP</td>
<td>0.98 ± 0.51</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KU70</td>
<td>0.72 ± 0.18</td>
<td>XLF</td>
<td>0.87 ± 0.19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KU80</td>
<td>0.62 ± 0.12</td>
<td>XPA</td>
<td>1.22 ± 0.09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LIG 3</td>
<td>0.90 ± 0.22</td>
<td>XPB</td>
<td>1.18 ± 0.46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LIG 4</td>
<td>1.82 ± 0.26</td>
<td>XPC</td>
<td>1.09 ± 0.29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MBD2</td>
<td>1.16 ± 0.32</td>
<td>XPD</td>
<td>1.01 ± 0.33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MBD4</td>
<td>0.94 ± 0.34</td>
<td>XPF</td>
<td>0.88 ± 0.28</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
7.2 Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>APAF1</td>
<td>Apoptotic protease-activating factor 1</td>
</tr>
<tr>
<td>ADP</td>
<td>Adenosine diphosphate</td>
</tr>
<tr>
<td>alt-EJ</td>
<td>Alternative end joining</td>
</tr>
<tr>
<td>AP-site</td>
<td>Apurinic/Apyrimidinic site</td>
</tr>
<tr>
<td>ATM</td>
<td>Ataxia Telangiectasia Mutated</td>
</tr>
<tr>
<td>ATP</td>
<td>Adenosine triphosphate</td>
</tr>
<tr>
<td>ATR</td>
<td>Ataxia telangiectasia and Rad3-related protein</td>
</tr>
<tr>
<td>ATRIP</td>
<td>ATR interacting protein</td>
</tr>
<tr>
<td>BER</td>
<td>Base excision repair</td>
</tr>
<tr>
<td>BID</td>
<td>BH3-interacting domain death agonist</td>
</tr>
<tr>
<td>BLM</td>
<td>Bloom syndrome protein</td>
</tr>
<tr>
<td>BRAF</td>
<td>Rapidly accelerated fibrosarcoma kinase B</td>
</tr>
<tr>
<td>BRCA2</td>
<td>Breast cancer type 2 susceptibility protein</td>
</tr>
<tr>
<td>BSA</td>
<td>Bovine serum albumin</td>
</tr>
<tr>
<td>bwt</td>
<td>Bodyweight</td>
</tr>
<tr>
<td>CAD</td>
<td>Caspase activated Dnase</td>
</tr>
<tr>
<td>Caspase</td>
<td>Cysteiny1-aspartate specific protease</td>
</tr>
<tr>
<td>CCNU</td>
<td>N-(2-chloroethyl)-N’-cyclohexyl-N-nitrosourea (Lomustine)</td>
</tr>
<tr>
<td>cdc25</td>
<td>Cell division cycle phosphatase</td>
</tr>
<tr>
<td>CDK</td>
<td>Cyclin-dependent kinase</td>
</tr>
<tr>
<td>CDKI</td>
<td>CDK inhibitor</td>
</tr>
<tr>
<td>cDNA</td>
<td>Complementary DNA</td>
</tr>
<tr>
<td>CENU</td>
<td>Chloroethyl-nitrosourea</td>
</tr>
<tr>
<td>CHK1</td>
<td>Chekpoint kinase 1</td>
</tr>
<tr>
<td>CHK2</td>
<td>Chekpoint kinase 2</td>
</tr>
<tr>
<td>CPD</td>
<td>Cyclobutane pyrimidine dimer</td>
</tr>
<tr>
<td>CSA</td>
<td>Cockayne syndrome protein A</td>
</tr>
<tr>
<td>CSB</td>
<td>Cockayne syndrome protein B</td>
</tr>
<tr>
<td>CtIP</td>
<td>CtBP interacting protein</td>
</tr>
<tr>
<td>CTLA-4</td>
<td>Cytotoxic T-lymphocyte-associated antigen 4</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>DDB2</td>
<td>DNA damage-binding protein 2</td>
</tr>
<tr>
<td>DISC</td>
<td>Death-inducing signaling complex</td>
</tr>
<tr>
<td>DMEM</td>
<td>Dulbecco's modified Eagle medium</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethylsulfoxide</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid</td>
</tr>
<tr>
<td>DNA-PKcs</td>
<td>DNA-dependent protein kinase catalytic subunit</td>
</tr>
<tr>
<td>DSB</td>
<td>DNA double-strand break</td>
</tr>
<tr>
<td>DSBR</td>
<td>DNA double-strand break repair</td>
</tr>
<tr>
<td>DTIC</td>
<td>5-(3,3-Dimethyl-1-triazanyl)imidazole-4-carboxamide (Dacarbazine)</td>
</tr>
<tr>
<td>DTT</td>
<td>Dithiothreitol</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylenediaminetetraacetic acid</td>
</tr>
<tr>
<td>EGFR</td>
<td>Epidermal growth factor receptor</td>
</tr>
<tr>
<td>EME1</td>
<td>Essential meiotic structure-specific endonuclease 1</td>
</tr>
<tr>
<td>ERCC1</td>
<td>Excision repair cross-complementation group 1</td>
</tr>
<tr>
<td>ERK2</td>
<td>Extracellular signal-regulated kinase 2</td>
</tr>
<tr>
<td>EXO1</td>
<td>Exonuclease 1</td>
</tr>
<tr>
<td>FA</td>
<td>Fanconi anaemia</td>
</tr>
<tr>
<td>FADD</td>
<td>Fas-associated death domain protein</td>
</tr>
<tr>
<td>FANCD2</td>
<td>Fanconi anemia group D2 protein</td>
</tr>
<tr>
<td>FCS</td>
<td>Fetal calf serum</td>
</tr>
<tr>
<td>FITC</td>
<td>Fluorescein-isothiocyanate</td>
</tr>
<tr>
<td>FM</td>
<td>Fotemustine</td>
</tr>
<tr>
<td>GBM</td>
<td>Glioblastoma</td>
</tr>
<tr>
<td>GFP</td>
<td>Green fluorescent protein</td>
</tr>
<tr>
<td>GG-NER</td>
<td>Global genome nucleotide excision repair</td>
</tr>
<tr>
<td>Gy</td>
<td>Gray</td>
</tr>
<tr>
<td>H3ac</td>
<td>Acetylated histone 3</td>
</tr>
<tr>
<td>H4ac</td>
<td>Acetylated histone 4</td>
</tr>
<tr>
<td>HAT</td>
<td>Histone acetyl transferase</td>
</tr>
<tr>
<td>HDAC</td>
<td>Histone deacetylase</td>
</tr>
<tr>
<td>HEPES</td>
<td>4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid</td>
</tr>
<tr>
<td>HR</td>
<td>Homologous recombination</td>
</tr>
<tr>
<td>ICL</td>
<td>Interstrand crosslink</td>
</tr>
<tr>
<td>IDH</td>
<td>Isocitrate dehydrogenase</td>
</tr>
<tr>
<td>IR</td>
<td>Ionizing radiation</td>
</tr>
<tr>
<td>LIG I</td>
<td>DNA ligase 1</td>
</tr>
<tr>
<td>MAPK</td>
<td>Mitogen-activated protein kinase</td>
</tr>
<tr>
<td>Acronym</td>
<td>Full Name</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
</tr>
<tr>
<td>MEK</td>
<td>Mitogen-activated protein kinase kinase</td>
</tr>
<tr>
<td>MGMT</td>
<td>(O^6)-methylguanine-DNA methyltransferase</td>
</tr>
<tr>
<td>MMC</td>
<td>Mitomycin C</td>
</tr>
<tr>
<td>MMR</td>
<td>Mismatch repair</td>
</tr>
<tr>
<td>MNNG</td>
<td>N-methyl-N'-nitro-N-nitrosoguanidine</td>
</tr>
<tr>
<td>MPG</td>
<td>N-methylpurine-DNA glycosylase</td>
</tr>
<tr>
<td>MRE11</td>
<td>Meiotic recombination 11 homolog</td>
</tr>
<tr>
<td>MRN</td>
<td>MRE11-RAD50-NBS1-complex</td>
</tr>
<tr>
<td>mt</td>
<td>mutant</td>
</tr>
<tr>
<td>MTIC</td>
<td>3-methyl-(triazene-1-yl)imidazole-4-carboximide</td>
</tr>
<tr>
<td>N3MeA</td>
<td>N3-methyladenine</td>
</tr>
<tr>
<td>N7MeG</td>
<td>N7-methylguanine</td>
</tr>
<tr>
<td>NAD+</td>
<td>Nicotinamide adenine dinucleotide</td>
</tr>
<tr>
<td>NBS1</td>
<td>Nijmegen breakage syndrome protein 1</td>
</tr>
<tr>
<td>N-CoR</td>
<td>Nuclear receptor corepressor 1</td>
</tr>
<tr>
<td>NER</td>
<td>Nucleotide excision repair</td>
</tr>
<tr>
<td>NHEJ</td>
<td>Non-homologous end joining</td>
</tr>
<tr>
<td>(O^6)BG</td>
<td>(O^6)-benzylguanine</td>
</tr>
<tr>
<td>(O^6)MeG</td>
<td>(O^6)-methylguanine</td>
</tr>
<tr>
<td>OGG1</td>
<td>8-oxoguanine DNA glycosylase</td>
</tr>
<tr>
<td>PARP1</td>
<td>Poly (ADP-ribose) polymerase 1</td>
</tr>
<tr>
<td>PBMC</td>
<td>Peripheral blood mononuclear cell</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate buffered saline</td>
</tr>
<tr>
<td>PCNA</td>
<td>Proliferating cell nuclear antigen</td>
</tr>
<tr>
<td>PD-1</td>
<td>Programmed cell death protein 1</td>
</tr>
<tr>
<td>PI</td>
<td>Propidium iodide</td>
</tr>
<tr>
<td>PNKP</td>
<td>Polynucleotide phosphatase/kinase</td>
</tr>
<tr>
<td>POL</td>
<td>Polymerase</td>
</tr>
<tr>
<td>PTEN</td>
<td>Phosphatase and Tensin homolog</td>
</tr>
<tr>
<td>qRT-PCR</td>
<td>Quantitative reverse transcription polymerase chain reaction</td>
</tr>
<tr>
<td>RFC</td>
<td>Replication factor C</td>
</tr>
<tr>
<td>RIPK1</td>
<td>Receptor-interacting serine/threonine-protein kinase 1</td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonucleic acid</td>
</tr>
<tr>
<td>RNAP II</td>
<td>RNA polymerase II</td>
</tr>
<tr>
<td>ROS</td>
<td>reactive oxygen species</td>
</tr>
<tr>
<td>RPA</td>
<td>Replication protein A</td>
</tr>
<tr>
<td>RPMI</td>
<td>Roswell Park Memorial Institute Medium</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>RT</td>
<td>Room temperature</td>
</tr>
<tr>
<td>SCE</td>
<td>Sister chromatid exchange</td>
</tr>
<tr>
<td>SD</td>
<td>Standard deviation</td>
</tr>
<tr>
<td>SDS</td>
<td>Sodium dodecyl sulfate</td>
</tr>
<tr>
<td>SDSA</td>
<td>Synthesis-dependent strand annealing</td>
</tr>
<tr>
<td>SDS-PAGE</td>
<td>SDS polyacrylamide gel electrophoresis</td>
</tr>
<tr>
<td>SEM</td>
<td>Standard error of the mean</td>
</tr>
<tr>
<td>SIRT</td>
<td>Sirin</td>
</tr>
<tr>
<td>SMAC</td>
<td>Second mitochondria-derived activator of caspases</td>
</tr>
<tr>
<td>SSB</td>
<td>DNA single-strand break</td>
</tr>
<tr>
<td>ssDNA</td>
<td>Single-strand DNA</td>
</tr>
<tr>
<td>TBS-T</td>
<td>TRIS-buffered saline with Tween</td>
</tr>
<tr>
<td>TC-NER</td>
<td>Transcription coupled Nucleotide excision repair</td>
</tr>
<tr>
<td>TEMED</td>
<td>Tetramethylethylenediamine</td>
</tr>
<tr>
<td>TFIIH</td>
<td>Transcription factor IIH</td>
</tr>
<tr>
<td>TMZ</td>
<td>Temozolomide</td>
</tr>
<tr>
<td>TNF</td>
<td>Tumor necrosis factor</td>
</tr>
<tr>
<td>TRAIL</td>
<td>TNF-related apoptosis inducing ligand</td>
</tr>
<tr>
<td>TRIS</td>
<td>Tris(hydroxymethyl)aminomethane</td>
</tr>
<tr>
<td>TSG</td>
<td>Tumor suppressor gene</td>
</tr>
<tr>
<td>UDG</td>
<td>Uracil-DNA glycosylase</td>
</tr>
<tr>
<td>UV</td>
<td>Ultraviolet</td>
</tr>
<tr>
<td>VEGF</td>
<td>Vascular endothelial growth factor</td>
</tr>
<tr>
<td>VPA</td>
<td>Valproic acid</td>
</tr>
<tr>
<td>wt</td>
<td>wild type</td>
</tr>
<tr>
<td>XPA</td>
<td>Xeroderma pigmentosum group A-complementing protein</td>
</tr>
<tr>
<td>XPC</td>
<td>Xeroderma pigmentosum group C-complementing protein</td>
</tr>
<tr>
<td>XPF</td>
<td>Xeroderma pigmentosum group F-complementing protein</td>
</tr>
<tr>
<td>XPG</td>
<td>Xeroderma pigmentosum group G-complementing protein</td>
</tr>
</tbody>
</table>
7.3 Publications

Research papers:

7.4 Congresses (poster presentations)

IMB Conference – DNA Demethylation, DNA Repair and Beyond (2012) Mainz
Andrea Krumm, Christina Barckhausen, Bernd Kaina, Wynand P. Roos
Sensitization of p53 wild-type melanoma cells towards temozolomide by the histone deacetylase inhibitor valproic acid

8th World Congress of Melanoma (2013) Hamburg
Andrea Krumm, Christina Barckhausen, Bernd Kaina, Wynand P. Roos
The Histone Deacetylase Inhibitor Valproic Acid Sensitizes Melanoma Cells towards Temozolomide and Ionizing Radiation

German-French DNA Repair Meeting (2013) Strasbourg-Illkirch
Andrea Krumm, Christina Barckhausen, Bernd Kaina, Wynand P. Roos
The Histone Deacetylase Inhibitor Valproic Acid Sensitizes Melanoma Cells towards Genotoxic Stress by Downregulation of Rad51

GBS Jahrestagung (2013) Darmstadt
Andrea Krumm, Christina Barckhausen, Bernd Kaina, Wynand P. Roos
Valproic Acid Reduces Rad51-dependent Homologous Recombination Repair thereby Sensitizing Melanoma Cells to Genotoxic Stress

13th Biennial Conference of the DGDR (2014) Mainz
Andrea Krumm, Christina Barckhausen, Bernd Kaina, Wynand P. Roos
Histone deacetylase inhibition by valproic acid sensitizes melanoma cells to chemotherapeutics by suppressing homologous recombination

30th Ernst Klenk Symposium in Molecular Medicine - DNA Damage Response and Repair Mechanisms in Aging and Disease (2014) Köln
Andrea Krumm, Christina Barckhausen, Bernd Kaina, Wynand P. Roos
Histone deacetylase inhibition by valproic acid sensitizes melanoma cells to chemotherapeutics by suppressing homologous recombination

18th International AEK Cancer Congress (2015) Heidelberg
Andrea Krumm, Christina Barckhausen, Pelin Kükülc, Bernd Kaina, Wynand P. Roos
Inhibition of class I histone deacetylases in melanoma cells suppresses homologous recombination and sensitizes to chemotherapeutics